
"log4rexx"
A log4j-Comparable Logging Framework

for ooRexx Applications
Rony G. Flatscher (Rony.Flatscher@wu-wien.ac.at), Wirtschaftsuniversität Wien

“The 2007 International Rexx Symposium”, Tampa, Florida, U.S.A.

April 29th – May 3rd 2007.

Abstract: While developing ooRexx applications programmers usually employ
statements in the code that help debug the applications, gather (interesting)
information about running those ooRexx programs and finally, report and log error
conditions that may have risen while executing programs.

The log4rexx framework has been devised after studying and experimenting with
Apache's log4j logging framework. It attempts to apply some of the human-centric
philosophy of Rexx, by simplyfying the framework as much as possible, but still
allowing the creation of specialized appenders to extend the framework. The
application of the log4rexx logging framework for (oo)Rexx programmers is quite
simple, straight forward and therefore easy to use.

 1 Introduction

A very important part of developing software is testing and debugging software. For

systematic testing testunit frameworks have been devised for many languages, one

for ooRexx was introduced in 2006 [Flat06]. While unit testing helps assure that

routines and methods behave according to their specifications, and integration tests

assert that the units are working together according the set-forth specification, this

may not be enough.

While developing applications it may become important to learn and understand

when which part of an application is being invoked and in case of anomalities to

decide whether a program should be stopped or is able to continue to execute

safely. Also monitoring deployed applications and learning about their execution

paths and states needs logging information to be produced by the application.

In the context of the Apache organization an interesting logging framework has

been devised and implemented for various languages, the original one which was

created for the programming language Java is named 'log4j', "logging for Java"

[W3LOG, W3L4J]. For 'log4j there exist numerous free introductions and tutorials

[W3G02, W3M05, W3S01] including a manual of one of the original authors, C.

Gülcü [W3G04].

This article introduces a "logging for Open Object Rexx (ooRexx), dubbed 'log4rexx'"

which follows the log4j architecture (v. 1.2) quite closely. Of course ooRexx being

an interpreted language possessing among other things a defined environment for

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 1 "log4rexx"

executing programs and coupling them will differ in its implementation. In addition,

compared to log4j a few enhancements and changes have been incorporated, like

allowing layouts and filters to be named objects, which can be easily reused with

different appenders.

This article introduces the logging architecture for Rexx coders. It first will

document and explain how the log4rexx framework can be put to work for logging

the execution of Rexx programs. This will be followed by an architectural overview

and a description of the functionalities (and their configuration) that different

classes make available.

As the logging framework can be configured with properties which can be explicitly

defined in a property text-file, it is important to know the property keys and its

values.

 2 An Example of Putting 'log4rexx' to Work

Figure 2.2 depicts an ooRexx program which defines a class "Person", with a

constructor (method "init"), a destructor (method "uninit"), the attribute methods

"familyName", "firstName", "salary", a method "string" for creating a string with

information about a person object, whenever ooRexx needs a string representation

of a Person object and finally, a method "increaseSalary" to allow increasing the

salary of persons. In the latter method the SYNTAX condition is intercepted, in case

a wrong argument is supplied with which one cannot carry out arithmetics. The

main program (at the top) will create an instance of the president of the RexxLA in

2007, Lee Peedin, with a due salary, that gets changed a few times, once with a non-

numeric string.

The output is shown in figure 2.1. The program will run successfully and no one

would note that in one particular invocation of the increaseSalary method, that

method's code actually ran into a syntax condition!

For debugging and monitoring that program one could start to add SAY statements

to log informative messages to the console, at least in the case that (e.g. syntax)

errors occur. For debugging purposes one could display the received argument

values. And if the flow of control is important for analysis and/or debugging, then

trace statements might be in order, which print out the arrival in any method (e.g.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 2 "log4rexx"

----------------- The beginning: -----------------
p=Peedin, Lee: 250000
-------------------- The end. --------------------

Figure 2.1: Output of Running the ooRexx Program in Figure 2.2.

giving the method's name and the object for which it got invoked) or routine.

But what, if the program does not run from a console? In such cases those log

messages could not be read and studied at all!

Another question one could ask is how to treat that log code which produces the

error, warn, debug, trace messages, if an application is supposed to be deployed.

Depending on the size of an application it may be very time consuming (and error

prone) to physically delete the log statements. If it was possible to leave the log

messages in the code, but turn off the outputting of these messages, then such an

application could be rolled out, without removing any log message in the code!

Having log messages in the deployed application and a means available to activate

the messages and log them to the console, or to files, then monitoring and analyzing

deployed applications becomes possible! The log4rexx framework allows for that for

ooRexx programs. Figure 2.3 enhances the program in figure 2.2 with numerous log

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 3 "log4rexx"

say ' The beginning: '~center(50, "-") /* draw a line */

p=.person~new("Peedin", "Lee", 250000) /* create a person*/
say "p="p~string /* show the person's state */
p~increaseSalary(12345.67) /* increase salary */
p~increaseSalary("abc") /* provoke an error */
p~increaseSalary(-1000) /* decrease salary */

say ' The end. '~center(50, "-") /* draw a line */

/* == */
::class person /* class "PERSON" */

/* --- */
::method init /* method "INIT" (constructor) */
 expose familyName firstName salary
 use arg familyName, firstName, salary

::method familyName attribute
::method firstName attribute
::method salary attribute

/* --- */
::method string /* create a string rendering of a person */
 expose familyName firstName salary
 return familyName"," firstName":" salary

/* --- */
::method increaseSalary /* method to increase the salary */
 expose salary
 parse arg raise

 signal on syntax /* in case arithmetic creates a condition */
 salary=salary+raise
 return
syntax: /* just there to let the program continue */

/* --- */
::method uninit /* optional destructor method */

Figure 2.2: "t0.rex" - A Simple ooRexx Program Causing an Unnoticed Syntax Error.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 4 "log4rexx"

say ' The beginning: '~center(50, "-") /* draw a line */
call load_log4rexx /* load the 'log4rexx' framework */
l=.logManager~getLogger("rgf.test") /* get/create a logger named 'rgf.test' */

parse arg logLevel /* retrieve logLevel, if supplied */
if logLevel="" then l~logLevel="OFF" /* do not show any log messages */
 else l~logLevel=logLevel /* set logLevel to argument's value */
l~debug("just created a logger named 'rgf.test':" pp(l~string))

parse source s /* get source information */
l~trace("source:" pp(s))

p=.person~new("Peedin", "Lee", 250000) /* create a person*/
say "p="pp(p~string) /* pp() defined in 'log4rexx' framework */
p~increaseSalary(12345.67) /* increase salary */
p~increaseSalary("abc") /* provoke an error */
p~increaseSalary(-1000) /* decrease salary */
say ' The end. '~center(50, "-") /* draw a line */
l~trace("end of program.")

/* === */
::class person /* class "PERSON" */

/* --- */
::method init /* method "INIT" (constructor) */
 expose familyName firstName salary

 l=.logManager~getLogger("rgf.test") /* get logger */
 l~trace("method 'init'")

 use arg familyName, firstName, salary
 l~debug("method 'init' - created the following person:" pp(self~string))

 if salary>10000 then -- warn about something
 l~warn("method 'init' - salary quite high:" salary)

::method familyName attribute
::method firstName attribute
::method salary attribute

/* --- */
::method string
 expose familyName firstName salary

 .logManager~getLogger("rgf.test")~trace("method 'string'")
 return familyName"," firstName":" salary

/* --- */
::method increaseSalary /* method to increase the salary */
 expose salary

 l=.logManager~getLogger("rgf.test")
 l~trace("method 'increaseSalary'")

 parse arg raise
 l~debug("method 'increaseSalary', received="pp(raise))
 signal on syntax /* in case arithmetic creates a condition */
 salary=salary+raise
 l~debug("method 'increaseSalary', new salary="pp(salary))
 return
syntax:
 l~error("method 'increaseSalary', exception has occurred!", condition("O"))

/* --- */
::method uninit
 .logManager~getLogger("rgf.test")~trace("method 'uninit'")
 .logManager~getLogger("rgf.test")~debug("method 'uninit' running for person:" pp(self))

Figure 2.3: "t1.rex" - A Simple ooRexx Program Containing 'log4rexx' Log Statements.

statements for the purpose of logging errors, warnings (if a salary seems to be too

high), debug and trace messages. All the applied changes are highlighted with a

light violet background in figure 2.3. Running it yields the same result and output as

above (cf. figure 2.1 above).

However, now it has become possible with the help of log4rexx to get all the errors

that got logged by invoking it as "rexx t1.rex error", yielding an output like in

figure 2.4, documenting exactly the error by displaying all the information supplied

by ooRexx.

The log4rexx framework defines six log levels which are internally represented as

numbers: TRACE < DEBUG < INFO < WARN < ERROR < FATAL. Running at a log level

("cateory") of ERROR will only process log messages that have a log level of ERROR or

higher.

In the program of figure 2.3 a class named LogManager is used to get a logger, by

supplying the logger's name as an argument to the getLogger message. The returned

logger accepts messages by the same name as the desired log level: trace, debug,

info, warn, error, fatal. These methods accept one string argument, and an optional

second argument which would be a condition object containing all condition

information. Whether these log messages get processed or not depends on the

logger's setting of logLevel: only messages at the given log level or with a higher log

level will get processed.

The processed log messages get forwarded to each appender in the logger's

appender queue. Therefore a processed log message may be further processed by

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 5 "log4rexx"

----------------- The beginning: -----------------
p=[Peedin, Lee: 250000]
 1: 0.301000 [rgf.test] ERROR - method 'increaseSalary', exception has occurred!
 ADDITIONAL..[an Array] containing 1 item(s)
 --> [abc]
 CODE........[41.1]
 CONDITION...[SYNTAX]
 DESCRIPTION.[]
 ERRORTEXT...[Bad arithmetic conversion]
 INSTRUCTION.[SIGNAL]
 MESSAGE.....[Nonnumeric value ("abc") used in arithmetic operation]
 POSITION....[63]
 PROGRAM.....[F:\test\t1.rex]
 PROPAGATED..[0]
 RC..........[41]
 TRACEBACK...[a List] containing 1 item(s)
 --> [63 *-* salary=salary+raise]

-------------------- The end. --------------------

Figure 2.4: Output of Running the ooRexx Program in Figure 2.3 with
"rexx t1.rex error".

multiple appenders. Each appender can be independently set to a log level threshold

value, which enables such an appender to ignore all supplied log messages with a

lower log level.

Changing the program of figure 2.3 a little bit will allow to add an additional

appender to the logger retrieved with the help of the LogManager class. The new

appender will save log messages in HTML form to the specified file.

The necessary changes are given in figure 2.5, in which the code additions are

highlighted. Running that program from the command line with "rexx t2.rex trace"

will process all log messages, which will be shown on the console (cf. figure 2.6) and

written into a file formatted as HTML. The HTML file can be viewed with any

browser, figure 2.7 on p. 8 depicts how the MS Internet Explorer will render the

HTML text.

Besides adding the log messages and retrieving the logger with the help of the

class, not much had to be done by the ooRexx code to achieve this log processing.

Studying the output briefly (e.g. figure 2.7), one can see that the log messages are

sequentially numbered, the date and time of the log message is given, the elapsed

time in the application since the logging has started, the name of the logger used to

process the log message and finally the logged message itself. In the case of a

condition the content of the condition object is displayed, the output sorted by the

key values and wherever array or lists are part of the information stored in the

condition object, that content is shown as well.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 6 "log4rexx"

say ' The beginning: '~center(50, "-") /* draw a line */

call load_log4rexx /* load the 'log4rexx' framework */

l=.logManager~getLogger("rgf.test") /* get (create?) a logger named 'rgf.test' */

 /* configure the logger a little bit: */
app=.FileAppender~new("test.rgf.app") /* create an appender */
app~layout=.HTMLLayout~new("test.rgf.layout")/* create a layout and assign it to appender */
app~fileName="test_"date("S")".html" /* set filename */
app~append=.false /* replace an existing file */
l~addAppender(app) /* add appender to logger */

.local~test.rgf.logger=l /* save logger in .local, even easier to refer to */

l~debug("appender created at runtime:" pp(app~name":" getLogLevelAsString(app~threshold)))

parse arg logLevel
if logLevel="" then l~logLevel="OFF" /* do not show any log messages */
 else l~logLevel=logLevel /* set logLevel to argument's value */

... cut ...

Figure 2.5: "t2.rex" – Adapting Program in Fig. 2.3 to Create a HTML File.

In principle a programmer is able to control all the loggers that are maintained via

the log4rexx framework. This allows for instance the controlled activation of log

message processing for applications that third parties may have created and that

employ the log4rexx framework themselves. As an example any programmer can

take advantage of the rgf.Socket class which is part of log4rexx (to enable the

creation of the TelnetAppender, which allows using telnet to look up the processed

log messages on a remote computer). Its logger is named "rgf.sockets". If someone

wants to trace the processing of messages sent to rgf.socket instances, then one

would need to retrieve that logger and set its log level to TRACE. Whenever tracing

should be shut off, the logger's log level can be reset.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 7 "log4rexx"

----------------- The beginning: -----------------
 1: 0.310000 [rgf.test] DEBUG - appender created at runtime: [test.rgf.app: ALL]
 2: 0.371000 [rgf.test] DEBUG - just created a logger named 'rgf.test': [a Log: name=rgf.test,
shortName=test, logLevel=TRACE, appenderQueue={[a FileAppender: name=test.rgf.app]}, additivity=1,
parent=[a Log: name=rootLogger, shortName=rootLogger, logLevel=DEBUG, appenderQueue={[a ConsoleAppender:
name=DEST_APP1]}, additivity=0, parent=[The NIL object]]]
 3: 0.391000 [rgf.test] TRACE - source: [WindowsNT COMMAND F:\test\t2html.rex]
 4: 0.421000 [rgf.test] TRACE - method 'init'
 5: 0.441000 [rgf.test] TRACE - method 'string'
 6: 0.461000 [rgf.test] DEBUG - method 'init' - created the following person: [Peedin, Lee: 250000]
 7: 0.481000 [rgf.test] WARN - method 'init' - salary quite high: 250000
 8: 0.511000 [rgf.test] TRACE - method 'string'
p=[Peedin, Lee: 250000]
 9: 0.531000 [rgf.test] TRACE - method 'increaseSalary'
 10: 0.551000 [rgf.test] DEBUG - method 'increaseSalary', received=[12345.67]
 11: 0.581000 [rgf.test] DEBUG - method 'increaseSalary', new salary=[262345.67]
 12: 0.601000 [rgf.test] TRACE - method 'increaseSalary'
 13: 0.621000 [rgf.test] DEBUG - method 'increaseSalary', received=[abc]
 14: 0.641000 [rgf.test] ERROR - method 'increaseSalary', exception has occurred!

ADDITIONAL..[an Array] containing 1 item(s)
 --> [abc]
CODE........[41.1]
CONDITION...[SYNTAX]
DESCRIPTION.[]
ERRORTEXT...[Bad arithmetic conversion]
INSTRUCTION.[SIGNAL]
MESSAGE.....[Nonnumeric value ("abc") used in arithmetic operation]
POSITION....[75]
PROGRAM.....[F:\test\t2html.rex]
PROPAGATED..[0]
RC..........[41]
TRACEBACK...[a List] containing 1 item(s)
 --> [75 *-* salary=salary+raise]

 15: 0.691000 [rgf.test] TRACE - method 'increaseSalary'
 16: 0.711000 [rgf.test] DEBUG - method 'increaseSalary', received=[-1000]
 17: 0.741000 [rgf.test] DEBUG - method 'increaseSalary', new salary=[261345.67]
 18: 0.761000 [rgf.test] TRACE - method 'uninit'
 19: 0.781000 [rgf.test] TRACE - method 'string'
 20: 0.801000 [rgf.test] DEBUG - method 'uninit' running for person: [Peedin, Lee: 261345.67]
-------------------- The end. --------------------
 21: 0.831000 [rgf.test] TRACE - end of program.

Figure 2.6: Output of Running the ooRexx Program in Figure 2.5 with
"rexx t2.rex trace".

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 8 "log4rexx"

Figure 2.7: Output of Running the ooRexx Program in Figure 2.5 with
"rexx t2.rex trace".

 3 The 'log4rexx' Architecture

The log4rexx framework creates an environment in which a class named LogManager

is available that allows applications to retrieve (get) loggers by name using its class

method getLogger, which expects a logger name as an argument. In the case that the

logger has not been created yet, .LogManager creates one, stores it for later retrieval

and returns it to the requesting application.

A logger is an instance of one of the following classes: Log, SimpleLog, or NoOp.1 All of

these classes understand the log messages trace, debug, info, warn, error, and fatal.

In addition the following methods are implemented returning either .true or .false,

depending whether processing of log messages at that particular log level is active:2

isTraceEnabled, isDebugEnabled, isInfoEnabled, isWarnEnabled, isErrorEnabled and

isFatalEnabled. For logging messages no other methods are needed.

Each logger of type Log has a name and may have one or more appenders in its

appender queue, to which log messages are forwarded for processing. Each

appender can process a log message according to an optional layout which is used

to format the log message. Each appender can be configured for a threshold log

level and optionally apply filters which ultimately decide, whether a received log

message will be processed by it. Figure 3.1 depicts these relationships.

1 The class that gets used is determined by the environment symbol
.log4rexx.config.LoggerFactoryClassName. It contains the name of the logger class ("Log", "SimpleLog",
"NoOpLog") to be used.

2 These methods are meant for situations where the creation of log messages may be very time or resource
consuming, allowing to determine whether a log message of a particular log level would be processed by
the logger, before creating the message: the result .true indicates that a message of that log level would
be processed, .false that it would not.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 9 "log4rexx"

Figure 3.1: Relationships (with Participation Constraints) Among the Classes
LogManager, Log, Appender, Layout, and Filter.

(0,n) (0,1)

(0,n)

(0,n) (0,1)

(0,n)

(0,n)

(0,n)

Appender

Layout

Filter

LogManager Log

Figure 3.2 depicts the relationships available for loggers of type SimpleLog and

NoOpLog, which both do not relate to appenders.

The following subsections will introduce and briefly characterize the classes that are

building the log4rexx infrastructure, the logger classes, the appender classes, the

filter classes and the layout classes.3

 3.1 The Infrastructural 'log4rexx' Classes

Figure 3.3 below shows the infrastructural classes LogLog, LogManager,

log4rexx.Properties, and log4rexx.Timing with the methods they define. Class

methods are highlighted in a bold font, the built-in ooRexx class Directory and its

methods are shown in a grey color.

 3.1.1 The “LogLog” Class

The LogLog class allows all the log4rexx framework classes to produce log messages

themselves, supplying the message (a string), and optionally a second argument

which can be a condition object.

The programmers can use the debug class method (outputs to the standard output

stream using the ooRexx built-in .output monitor object), the warn and error class

methods (output to the stadard error stream using the built-in .error monitor

object).

Debug messages are by default inhibited. This is controlled by the logical values

.true or .false stored in the ooRexx .local environment with the name:

"log4rexx.config.LogLog.Debug". Setting this environment entry to .true will cause

debug messages to be shown, otherwise they will be supressed. Warning and error

3 The ooRexx classes rgf.Socket and rgf.ServerSocket that were created for realizing the TelnetAppender
class are shown in the appendix.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 10 "log4rexx"

Figure 3.2: Relationships (with Participation Constraints) Between LogManager and the
SimpleLog, respectively the NoOpLog Classes.

SimpleLogLogManager
(0,n) (0,1)

NoOpLogLogManager
(0,n) (0,1)

messages will be shown, independently of the setting of the aforementioned

environment entry.

However, if no log messages should be shown whatsoever, then one can do so, by

setting an environment entry named "log4rexx.config.LogLog.QuietMode" to .true.

 3.1.2 The “LogManager” Class

The LogManager class possesses only class methods. It is not meant to be used to

create instances, but rather serves as a utility class. It can be accessed by any

ooRexx program using the environment symbol .LogManager.

Its most important class method is getLogger, which expects a name for a logger. It

will use that name to look up the logger in its loggerDir directory and returns the

logger object, if available. Otherwise a logger object is created, using the class

denoted by name in the environment symbol

.log4rexx.config.LoggerFactoryClassName. saved in its loggerDir directory and

thereafter returned.

The LogManager can also serve appenders (getAppender), layouts (getLayout), and

filters (getFilter) by name. If the objects are not available, and an optional class

object is supplied as the second argument, then a default instance is created, stored

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 11 "log4rexx"

Figure 3.3: The Infrastructural 'log4rexx' Classes (Class Methods Are in Bold).

Object

LogLog LogManager Directory Log4rexx.Timing

init init at, [] init
additional_output appenderDir difference elapsed
debug configuration entry elapsedSeconds
error configure hasEntry elapsedWithDays
warn configureAndWatch hasIndex reset

filterDir interSection startBaseDays[=]
getAppender items startDate
getFilter makeArray startSecs[=]
getLayout put, []= startTime
getLogger remove
layoutDir setEntry
loggerDir setMethod
putAppender subSet
putFilter supplier
putLayout union
putLogger unknown
resetConfiguration xor
rootLogger[=]
startDateTime[=] Log4rexx.Properties
stopWatching

readPropertyFile
equal
getPropertyValue
same

with the supplied name in the appropriate directory object and returned.

Another important service the LogManager class carries out, is the processing of

(optional) log4rexx property files, which may contain definitions for runtime options,

default values for SimpleLogger, values for configuring named loggers, named

appenders, named layouts, and named filters. .LogManager will be able to monitor

such a configuration file for changes and apply those changes to a running system,

if the configuration is set up for it. This montoring for file changes is carried out if

the environment symbol ".log4rexx.config.configFileWatchInterval" stores a number

which is larger than 0 seconds.4

 3.1.3 The “log4rexx.Properties” Class

The log4rexx.Properties class is a specialisation of the built-in class .Directory. It

allows for reading log4rexx property files. The property keys will be stripped of

leading and trailing blanks and put into uppercase. The getPropertyValue method

allows retrieving property entries, optionally supplying a default value which should

be returned in the case that there is no entry for the supplied key. In addition it

allows to compare two properties objects to determine whether they are equal

(ignoring leading and trailing blanks in the values) or identical (method same), i.e.,

comparing values byte by byte.

This class is responsible for parsing property files and collecting their definitions.

 3.1.4 The “log4rexx.Timing” Class

The log4rexx.Timing class is responsible for keeping an elapsed time counter. As

ooRexx does not have any statistics available for this kind of information, a

surrogate had to be created.

Whenever the log4rexx framework is initialized one (central) instance of this class is

created and used for measuring the elapsed time from that moment on. This

information is then added to the log message directory object such that it can be

used to indicate the elapsed time for that particular message since the start of the

log4rexx framework.

 3.2 The Logger 'log4rexx' Classes

Usually, the only class a user of the log4rexx framework is confronted with, is of the

type "Log". Its instances are called "loggers" and are usually maintained by the

LogManager class, which one uses to retrieve a specific logger at runtime by

4 If a file has not been watched for changes, after changing the watch interval to a number greater than 0,
the programmer needs to send the .LogManager the watchAndConfigure message to (re-) start watching.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 12 "log4rexx"

supplying the logger's name with the getLogger message.

To create log messages the programmer would send a logger one of the following

messages, which are named after the log level they represent: trace, debug, info,

warn, error (error, but continuing with processing is possible), fatal (fatal error,

program cannot continue to execute). Each of these methods expects a message as

an argument (a string) and may have one or two additional arguments. The second

argument, if given, is either the condition object, or may be a string or a directory

object and is then dubbed the "additional" argument. If the second argument is a

condition object, then the "additional" argument would be supplied as the third

argument.

The attribute logLevel determines, which log messages the logger will process: it

will only process log messages that are of the same log level or higher. The relation

between the different levels of log messages is as follows: ALL < TRACE < DEBUG < INFO

< WARN < ERROR < FATAL < OFF.5 To assign a new value, assign logLevel a string

supplying the name of the log level.

Sometimes it may be the case that creating the log message is time and/or resource

consuming, such that the programmer wishes to carry it out only, if such a produced

log messages is processed by the logger. To help determine this, the boolean

methods isTraceEnabled, isDebugEnabled, isInfoEnabled, isWarnEnabled,

isErrorEnabled, isFatalEnabled have been created. These methods will return .true,

if the processing of that log level is active for the logger, .false else.

The Log class is the standard and most powerful of the available logger classes. It

gets used, if the log4rexx framework at start up finds the standard property file

"log4rexx.properties", or if a custom property file was processed that defines the

string "Log" with the key "log4rexx.config.LoggerFactoryClassName".

The SimpleLog class does not employ any appenders and is capable of simple log

message processing, sending the message to the console. It is used, if only the

standard property file "simplelog4rexx.properties" is found, or if a custom property

file was processed that defines the string "SimpleLog" with the key

"log4rexx.config.LoggerFactoryClassName".

The NoOpLog class is the "null operation Log class" and does not process any of the

received log messages. This allows deployed applications to run and send off log

messages that do not get processed, instead the methods will return immediately.

All methods testing for processing log messages of a certain level will return .false

5 Each log level is represented internally by a number allowing to carry out the comparisons. The log levels
ALL and OFF are special, in that ALL is set to 0, the lowest possible log level number, and OFF is set to a
number which is higher than FATAL, inhibiting the processing of log messages at the fatal level.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 13 "log4rexx"

to inhibit the creation of time/resource hungry log messages. It is this class that

allows keeping log messages in the applications. This logger class is used, if none of

the standard property files "log4rexx.properties" and "simplelog4rexx.properties"

could be found, or if a custom property file was processed that defines the string

"NoOpLog" with the key "log4rexx.config.LoggerFactoryClassName".

It is possible to globally define a minimum (threshold) log level for processing log

messages, independent of the settings of existing loggers. This is done by defining

an environment symbol named ".log4rexx.config.disable" and setting it to the

minimum (threshold) log level: all log messages at a lower level will not be

processed by any loggers, even if loggers existed that would have an appropriate log

level. Setting this value to OFF in effect stops processing log messages for the entire

log4rexx framework! However, this runtime setting is only respected, if a second

environment symbol named ".log4rexx.config.disableOverride" exists and is set to

.false. This way, it becomes possible to temporarily allow to remove the effect of

the ".log4rexx.config.disable" setting, by changing the value of the environment

symbol ".log4rexx.config.disableOverride" to .true.6

6 These changes can be done at runtime, either by programmatically changing the value of the environment
symbols (entries in .local) or indirectly by changing the properties file entry relating to the global
configuration of the log4rexx framework while that file is being watched.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 14 "log4rexx"

Figure 3.4: The Logger Classes Log, SimpleLog, and NoOpLog (Class Methods Are in Bold)

Object

Log

init isTraceEnabled
addAppender isWarnEnabled
additivity[=] log
appenderQueue[=] logLevel[=]
clearAppenderQueue makeLogDir
configure name[=]
debug parent
error setUpParent
fatal shortName[=]
info string
isDebugEnabled timer[=]
isErrorEnabled trace
isFatalEnabled unknown
isInfoEnabled warn

SimpleLog NoOpLog

init init debug isInfoEnabled
showDateTime[=] log error isTraceEnabled
showLoggerName[=] showDateTime[=] fatal isWarnEnabled
showShortName[=] showLoggerName[=] info log
configure showShortName[=] isDebugEnabled trace
defaultLogLevel[=] string isErrorEnabled unknown

isFatalEnabled warn

The processing of log messages is by default synchroneous, i.e., an application

sending a log message will be halted, until the log message has been processed in

full. Sometimes, in very time critical applications it may be desirable to have the log

messages processed asynchroneously, i.e. control returns immediately upon

dispatching the message to the application. This feature is controlled by the

environment symbol ".log4rexx.config.asyncMode", which by default is set to .false.

Changing it to .true will switch to asynchroneous processing of log messages,

making sure that the log messages are still processed in the sequence they were

received.

Figure 3.4 above depicts the class hierarchy and the methods the logger classes

inherit and implement.

 3.2.1 The “Log” Class

The Log class is the most versatile of the logger classes and serves as the superclass

for the SimpleLog and NoOpLog classes.

If the name of a logger has dots in it, then these dots delimit the "components" of

the logger's name. It is possible that there are different loggers with different

names, but have a common "trunk", i.e. they share one or more of the component

names, if one reads the logger's name from left to right. Loggers that share common

components, but have fewer components than the others, are called "parents" of

these other loggers. It is possible to have the parent loggers process the same log

messages their "descendants" have received. There exists a single "rootLogger" in

the framework which serves as the root parent for any logger in the system.7

Loggers of this class process all received log messages with a log level being equal

or higher than their logLevel attribute. They create a directory object for each

received log message, add date, time and timing information to it and then sends

that log message directory to each of the appenders stored in their appenderQueue

attribute. In the case that no appenders are defined, then the class will simply send

the log message to the console.

In addition, if the attribute additivity is set to .true, then the message directory

object is sent to the logger's "parent", if it exists, otherwise it gets sent to the so

called rootLogger for further processing.

 3.2.2 The “SimpleLog” Class

The SimpleLog class, as its named suggests, simply outputs the received log

7 The rootLogger is created by the log4rexx framework at start up and by default employes a ConsoleAppender
object which sends the log messages to the console. It can be individually configured like any other logger.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 15 "log4rexx"

messages by optionally displaying the date and time, the name of the logger

instance in its full form or just the last component of the dotted name.

No appenders are employed for processing log messages.

 3.2.3 The “NoOpLog” Class

The NoOpLog class represents the "no operation logger". It will allow to receive log

messages, but does not process them and will return immediately. Any application

using the log4rexx framework can use this class in deployed versions of their

applications, such that no log messages are processed at a client site.

 3.3 The Appender 'log4rexx' Classes

Loggers of type Log forward a log message directory object to "appenders" to carry

out the "appending" of messages to whatever destination the appender got set up

for and is capable of utilizing. An appender may serve more than one logger.

Appenders allow defining specific layout objects for formatting the messages and

may employ filters which can be used to process just specific log messages. Each

appender can be configured with a threshold (minimum) log level, independently of

the logger it serves. This way appenders could ignore log messages sent to it for

processing.

A logger may use more than one appender, e.g. one appender which appends the

log message to the console (class ConsoleAppender), another one which appends the

same log message to a file (class FileAppender), yet another one which appends the

very same log message to a telnet port (class TelnetAppender). This way it is possible

to create many different collections of the log messages from one run of an

application. The initial example in this article has excercised this feature by creating

a FileAppender which gets the log messages formatted as HTML in addition to the

messages sent to the console (via the rootLogger), cf. figure 2.5 on p. 6, causing in

addition to the console output (cf. figure 2.6 on p. 7) the creation of a HTML file

containing the same log messages (cf. figure 2.7 on p. 8).

Figure 3.5 depicts the class hierarchy and the methods the appender classes inherit

and implement.

The following subsections will sometimes explicitly explain some appender

attributes, such that the reader becomes able to understand and set these very

same values via configuration files or configure appenders at run time for that

matter.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 16 "log4rexx"

 3.3.1 The “Appender” Class

The Appender class defines the attributes and methods that all specialized appender

classes will possess.

The configurable attribute threshold allows to determine the minimum log level that

an appender accepts for processing. To assign a new value, assign a string

supplying the name of the log level: "ALL", "TRACE", "DEBUG", "INFO", "WARN", "ERROR",

"FATAL", or "OFF". By default an appender accepts "ALL" log level messages it

receives from a logger.

 3.3.2 The “ConsoleAppender” Class

The ConsoleAppender class specializes the Appender class and appends log messages

to the console.

The attribute immediateFlush is set to .true by default and causes the log messages

to be immediatly written to the console, such that no buffering takes place.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 17 "log4rexx"

Figure 3.5: The Appender Class Hierarchy.

Object

Appender

init ConsoleAppender NullAppender TelnetAppender
activateOptions
addFilter init configure init
clearFilterQueue configure doAppend activateOptions
close follow[=] string close
configure immediateFlush[=] closeServerSocket
doAppend process configure
filterQueue[=] string keepClients[=]
layout[=] target[=] maxLogsInQueue[=]
name[=] newClient
process port[=]
requiresLayout[=] process
string string
threshold[=]
uninit FileAppender
unknown

init DailyRollingFileAppender
activateOptions
append[=] init RollingFileAppender
bufferedIO[=] configure
close rollType[=] init
configure close activateOptions
fileName[=] activateOptions configure
openStream openStream maxBackupIndex[=]
process rollOver maxFileSize[=]
string string openStream
targetStream[=] process

string

The attribute target accepts either the standard output (string values "stdout",

"output") or standard error (string values "stderr", "error") file as an argument.

The attribute follow (values .true or .false) determines, whether an attempt to

change the target attribute value should be followed (accepted) or not.

 3.3.3 The “FileAppender” Class

The FileAppender class specializes the Appender class and defines the attributes and

methods that its specialized appender classes will possess. It appends the received

log messages to a file.

The attribute append (values .true or .false) specifies, whether log messages should

be appended to an existing file or whether an existing file would be truncated before

appending log messages to it.

The attribute bufferedIO (values .true or .false) specifies, whether log messages

should be appended immediately to an existing file, or whether buffering would be

allowed.

The attribute fileName (any valid file name, may contain drive and path, if the

filesystem supports it) specifies the name of the file to which the log messages

should be written to.

 3.3.4 The “RollingFileAppender” Class

The RollingFileAppender class specializes the FileAppender class.

It allows to automatically create new log files, in the case the current one has

exceeded the value of the configurable attribute maxFileSize. The maxFileSize value

(default value: 10MB) can be given as a pure number of bytes or a number followed

by one of: kb (kilo byte), mb (mega byte), gb (giga byte), or tb (tera byte).

The attribute maxBackupIndex (default value: 1) determines how many generations of

log files are kept. If this number is exceeded, then the oldest log file will be deleted,

the existing ones renamed and a new file will be used to send the log messages to. If

maxBackupIndex is set to the value 0, then no backup log files are created.

 3.3.5 The “DailyRollingFileAppender” Class

The DailyRollingFileAppender class specializes the FileAppender class.

The configurable attribute rollType allows to determine the roll over type, which

causes the creation of a new log file to be used to append the log messages to. The

filename gets the creation date (formatted as: ".YYY-MM-DD-") and time (formatted as:

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 18 "log4rexx"

"HH_MM_SS_") and the name of the rollType appended to it.

rollType may denote one of the following roll over types:

● "MINUTE": a new log file will be created and used at every full minute,

● "HOUR": a new log file will be created and used at every full-hour,

● "HALF_DAY": a new log file will be created and used at noon ("12:00") and at

midnight ("00:00"),

● "DAY": a new log file will be created at midnight of each day ("00:00"),

● "WEEK": a new log file will be created each Monday at midnight ("00:00"),

● "MONTH": a new log file will be created at the 1st of each month at midnight

("00:00").

 3.3.6 The “NullAppender” Class

The NullAppender class specializes the Appender class and defines a "no operation

appender". It can be used in cases, where (temporarily) an appender should not

process log messages.

 3.3.7 The “TelnetAppender” Class8

The TelneAppender class specializes the Appender class and allows dispatching log

messages to a TCP/IP socket, which can be addressed via the telnet application from

the same machine or another one. This appender enables the monitoring of log

messages on remote computers. The implementation just reacts upon the receipt of

the CTL-C or CTL-D characters, closing the respective client socket. Therefore

deploying this appender is safe as it is not possible to use it as a backdoor or to

attack a computer via the port that gets served.

The attribute port is set to the well defined telnet port 23 by default. It can be any

valid socket port number, i.e. a value between 1 and 65535. Depending on the

operating system, it may not be possible to use a port number between 1 and 1024,

as these values may have been reserved for security reasons. In such cases one

needs to use a higher port number. Also, existing firewalls need to be configured to

allow traffic to the defined port.

The attribute keepClients (values .true or .false) controls, whether connections to

clients should be closed if the port number gets changed.

8 In order to implement this interesting class it was necessary to devise a socket class first which would
wrap ooRexx external socket functions into an ooRexx class, making it easy to create socket applications in
ooRexx. The methods of the socket classes are listed in the appendix.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 19 "log4rexx"

The attribute maxLogsInQueue determines the number of log messages that should be

kept in a circular queue. If a new client connection is established, then the new

client will get the latest maxLogsInQueue log messages sent right away.

 3.4 The Layout 'log4rexx' Classes

Appenders can have a layout assigned to them, which will be used for formatting log

messages. Figure 3.6 displays the log4rexx layout class hierarchy with the methods

each layout class defines.

 3.4.1 The “Layout” Class

The Layout class defines the attributes and methods that all specialized layout

classes will possess.

The configurable attribute contentType accepts a string in the MIME (acronym for

"Multimedia Internet Message Extensions", "Multipurpose Internet Mail

Extensions") format, defaulting to the string "text/plain". Depending on the layout

the attributes header and footer allow to specify the string to be used for lead-in and

lead-out text.

Simple formatting of a log message is implemented, listing the log messge number,

followed by a colon and blank, depicting the log level, a blank surrounded dash, the

string value of the log message, and the operating system dependent EOL ("end-of-

line") characters. If a condition object is supplied, its content will be formatted as a

string of key, colon, blank and value and appended, followed by another set of EOL

characters.

 3.4.2 The “SimpleLayout” Class

The SimpleLayout class simply specializes the Layout class to match the 'log4j'

SimpleLayout class. There are no specific methods defined, as all of the inherited

methods already format log messages accordingly.

 3.4.3 The “PatternLayout” Class

The PatternLayout class specializes the Layout class and allows the definition of a

pattern, which gets used for formatting log messages. Depending on the pattern, all

or only part of the information available in the passed in log message directory

object may be used.

log4rexx adheres to the 'log4j' conversion character encodings where possible, but

also adds a few log4rexx specific options. A pattern is a sequence of characters

which will be copied verbatimly into the created message string. If a percent

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 20 "log4rexx"

character (%) is encountered in the pattern string, special processing is applied. The

percent character may be followed by one of the characters in figure 3.7 which may

refer to an entry in the log message directory object, that got created by the logger

and passed on to the layout format method via the appender. The meaning of each

character is given in figure 3.7 in the comment field.

Between the escape character % and the pattern character of figure 3.7 there may

be a number which determines the minimum width in the output string. Values

which are shorter than the minimum width are right adjusted by default; wider

values would not be truncated to the minimum width. If a value should be left or

centrally adjusted within the minium width, then the escape character % needs to be

immediately followed by a dash (-) or a carêt (^) character, respectively. Examples:

"%10p": minimum width 10, right adjust log level name,

"%-10p": minimum width 10, left adjust log level name,

"%^10p": minimum width 10, center log level name.

It is also possible to specify a maximum width, which is indicated by a dot followed

by the maximum width number. Values that exceed the maximum width, will be

truncated. Examples:

"%.25m": maximum width 25 characters, truncate message, if too long,

"%10.25m": minimum width 10, maximum width 25 characters, right adjust

message, if shorter than minimum width,

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 21 "log4rexx"

Figure 3.6: The Layout Class Hierarchy.

Object

Layout

init PatternLayout SimpleLayout
configure
contentType[=] init
footer[=] configure
format conversionPattern[=]
header[=] format
name[=] parsedPattern[=]
reset string
string
unknown HTMLLayout XMLLayout

init init
configure configure
conversionPattern= conversionPattern=
format format
string header
styleSheetName[=] processInstruction[=]
title[=] string
useStyleSheet[=]

"%-25.25m": minimum width 25, maximum width 25 characters, left adjust

message, if shorter than minimum width, truncate to maximum width,

"%^25.25m": minimum width 25, maximum width 25 characters, center message,

if shorter than minimum width, truncate to maximum width.

Character Comment

a additional, log4rexx only: refers to optional second argument, which can be a string or a
directory object; in the case that the second argument to a log message is a condition object,
one can submit the additional argument as a third argument to the log message.

c category: the logger name ("category" is the old 'log4j' name for "logger"). If the name
contains components delimited by dots, it is possible to indicate the number of components
(from the right!) to be displayed by enclosing that number in curly brackets must follow
immediatly the character, e.g.: "%c{1}" will extract the rightmost component from the logger's
name and display it.

C ClassName: n/a in log4rexx

d dateTime: the date and time the log message got created, default format: "YYYY-MM-DD
hh:mm:ss.nnnnnn". The character may be immediately followed by a pair of curly brackets in
which the first character may be "D" (date portion) or "T" (time portion). This allows to extract
only the date or the time portion.
If either the date or the time portion should be formatted in a a special way, then one letter may
follow. This letter will be used to apply the ooRexx built-in-functions DATE() or TIME() for
formatting and corresponds to the respective ooRexx letter.
Finally, wherever DATE() allows to define a delimiter character (conversion character one of
"ENOSU") with a conversion option, one can add another character representing that delimiter.
Examples:
"%d{DS-}" ... extract the date portion, convert it to a sorted date and use a dash as delimiter,
"%d{TC}" ... extract the time portion, convert it to the U.S. "Civil" format.

f fieldName, log4rexx only: allows to propose a column title for the following log message
information; e.g. used in .HTMLLayout. The desired name is enclosed in curly braces and must
follow immediatly the character, e.g.: "%f{Elapsed Time}"

F fieldName: n/a in log4rexx

L LineNumber: n/a in log4rexx

n newLine

N LogNumber, log4rexx only: the logger's sequence number assigned to the log message

M MethodName: n/a in log4rexx

m message

p priority, logLevel: the name of the log level ("priority" is the old 'log4j' name for "log level")

R elapsed time: formatted as a military (24) hour time, and if more than a day has passed since
the timer got started, the number of days are given; hence the format is "d hh:mm:ss.nnnnnn"

r elapsed time: formatted as seconds with microseconds, hence the format is: "s.nnnnnn"

t threadName: n/a in log4rexx

% print the % character verbatimly

Figure 3.7: Conversion Characters of the PatternLayout Class.

 3.4.4 The “HTMLLayout” Class

The HTMLLayout class specializes the PatternLayout class and renders log messages

with HTML encodings. The conversionPattern determines what kind of information

gets created. If a "%f{someFieldColumnHeading}" precedes a conversion character,

then the bracketed string serves as the column heading text in the HTML table this

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 22 "log4rexx"

layout will use to format the log messages.

If the attribute useStyleSheet is set to .true, then a style sheet will be used for

displaying the HTML table. In that case, if the attribute styleSheetName is blank an

internal style element will be created in the HTML head element, otherwise a link to

the external style sheet with the stored file name will be inserted.

 3.4.5 The “XMLLayout” Class

The XMLLayout class specializes the PatternLayout class and renders log messages

with XML encodings. The conversionPattern determines what kind of information

gets created. If a "%f{someFieldColumnHeading}" precedes a conversion character,

then the bracketed string serves as the XML element name.

If the attribute processInstruction contains a non-empty string, then it is inserted

into the XML header.

The default XML encoding is self documenting.

 3.5 The Filter 'log4rexx' Classes

Appenders possess a filterQueue attribute, which may be used to store any number

of filters. If there are filters available, the appender presents the log message

directory object to each filter and processes such a log message only, if it does not

get denied in the process.

A filter may be neutral about a log message, which will cause the log message to be

presented to the next filter in the queue. If there are no more filters in the queue,

the log message gets processed.

Some filters may accept a log message, in which case the log message is not

presented to possibly remaining filters in the queue, but is rather processed right

away.

 3.5.1 The “Filter” Class

The Filter class defines the attributes and methods that all specialized filter

classes will possess.

The configurable attribute acceptOnMatch can be set to .true or .false. However, it

depends on the semantics of the particular filter type what these values mean,

whether the decision of the filter would be "accept", "deny" or "neutral" as a result.

Figure 3.8 on p. 25 depicts the log4rexx filter class hierarchy.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 23 "log4rexx"

 3.5.2 The “DateRangeFilter” Class

The DateRangeFilter class specializes the Filter class and allows the definition of a

date range, assigning date values (strings formatted like sorted dates, i.e.

YYYYMMDD) to the attributes dateMin (default: "00010101") and dateMax (default:

"99991231").

If there is an error in the filter's definition, i.e. dateMax<dateMin, then the filter will

return the decision "neutral".

This filter takes the following decisions, if the log message date falls within the

given date range:

● if acceptOnMatch is set to .true, it returns "neutral",

● if accetpOnMatch is set to .false, it returns "deny".

This filter takes the following decisions, if the log message date does not fall within

the given date range:

● if acceptOnMatch is set to .true, it returns "deny",

● if accetpOnMatch is set to .false, it returns "neutral".

 3.5.3 The “DenyAllFilter” Class

The DenyAllFilter class specializes the Filter class and always returns the decision

"deny". Sometimes it may be useful to place such a filter at the end of the filter

queue, in case the programmer wants a log message not to be processed, if the

filters in the queue only return the decision "neutral".

 3.5.4 The “LevelMatchFilter” Class

The LevelMatchFilter class specializes the Filter class and allows to define a log

level with the attribute logLevelToMatch to test the log message against.

If a log message does not possess the same log level as the attribute

logLevelToMatch, then the decision "neutral" is returned.

Otherwise (log level of message matches this filter's log level) the following

decisions are taken by this filter:

● if acceptOnMatch is set to .true, it returns "accept",

● if accetpOnMatch is set to .false, it returns "deny".

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 24 "log4rexx"

 3.5.5 The “LevelRangeFilter” Class

The LevelRangeFilter class specializes the Filter class and allows the definition of a

log level range, assigning log level values to the attributes logLevelMin (default:

"LOWEST") and logLevelMax (default: "HIGHEST").

This filter takes the following decisions, if the log message's log level falls within the

given range:

● if acceptOnMatch is set to .true, it returns "accept",

● if accetpOnMatch is set to .false, it returns "neutral".

This filter takes the following decision, if the log message's log level does not fall

within the given range: it returns "deny".

 3.5.6 The “MonthRangeFilter” Class

The MonthRangeFilter class specializes the Filter class and allows the definition of a

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 25 "log4rexx"

Figure 3.8: The Filter Class Hierarchy.

Object

Filter

init DateRangeFilter DenyAllFilter LevelMatchFilter
acceptOnMatch[=]
configure init configure init
decide checkDate decide configure
name[=] configure string decide
string decide logLevelToMatch[=]
unknown dateMax[=] string

dateMin[=]
string

LevelRangeFilter MonthRangeFilter StringMatchFilter

init init init
configure checkMonth configure
decide configure decide
logLevelMax[=] decide ignoreCase[=]
logLevelMin[=] monthMax[=] stringToMatch[=]
string monthMin[=] string

string

TimeRangeFilter WeekdayRangeFilter

init init
checkTime checkWeekday
configure configure
decide decide
timeMax[=] weekdayMax[=]
timeMin[=] weekdayMin[=]
string string

month range, assigning month values (either the numbers "1" through "12", or the

English month names "January" through "December") to the attributes monthMin

(default: "1", January) and monthMax (default: "12", December).

Note that it is possible to have monthMax<monthMin, which means that the month

range spans a year. E.g. defining monthMin=11, and monthMax=1 means a month range

from "November" through "January".

This filter takes the following decisions, if the log message's month falls within the

given range:

● if acceptOnMatch is set to .true, it returns "neutral",

● if accetpOnMatch is set to .false, it returns "deny".

This filter takes the following decisions, if the log message's month does not fall

within the given range:

● if acceptOnMatch is set to .true, it returns "deny",

● if accetpOnMatch is set to .false, it returns "neutral".

 3.5.7 The “StringMatchFilter” Class

The StringMatchFilter class specializes the Filter class and allows to define a search

string stored in the attribute stringToMatch to test the log message against. If the

attribute ignoreCase (default value: .false) is set to .true, the comparison is carried

out caselessly.

If the search string of the attribute stringToMatch or the message text is the empty

string, or the message text is .nil, then the decision "neutral" is returned.

Otherwise (log level of message matches this filter's log level) the following

decisions are taken by this filter:

● if acceptOnMatch is set to .true, it returns "accept",

● if accetpOnMatch is set to .false, it returns "deny".

If the search string is not found in the message text, then "neutral" gets returned.

 3.5.8 The “TimeRangeFilter” Class

The TimeRangeFilter class specializes the Filter class and allows the definition of a

time of day range, assigning time values (in the form "mm:hh") to the attributes

timeMin (default: "00:00") and timeMax (default: "23:59"). The comparisons do not take

seconds and microseconds into account..

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 26 "log4rexx"

Note that it is possible to have timeMax<timeMin, which means that the time of day

range spans a day. E.g. defining timeMin="22:00", and timeMax="01:00" means a time

of day range range from "22:00" evening through "01:00" in the morning of the next

day.

This filter takes the following decisions, if the log message's time of day falls within

the given range:

● if acceptOnMatch is set to .true, it returns "neutral",

● if accetpOnMatch is set to .false, it returns "deny".

This filter takes the following decisions, if the log message's time of day does not fall

within the given range:

● if acceptOnMatch is set to .true, it returns "deny",

● if accetpOnMatch is set to .false, it returns "neutral".

 3.5.9 The “WeekdayRangeFilter” Class

The WeekdayRangeFilter class specializes the Filter class and allows the definition of

a weekday range, assigning weekday values (either the numbers "1", representing

Monday, through "7", representing Sunday, or the English weekday names "Monday"

through "Sunday") to the attributes weekdayMin (default: "1", Monday) and weekdayMax

(default: "7", Sunday).

Note that it is possible to have weekdayMax<weekdayMin, which means that the

weekday range spans a week. E.g. defining weekdayMin="6", and weekdayMax="1"

weekday range range from "Saturday" through "Monday".

This filter takes the following decisions, if the log message's weekday falls within

the given range:

● if acceptOnMatch is set to .true, it returns "neutral",

● if accetpOnMatch is set to .false, it returns "deny".

This filter takes the following decisions, if the log message's time of day does not fall

within the given range:

● if acceptOnMatch is set to .true, it returns "deny",

● if accetpOnMatch is set to .false, it returns "neutral".

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 27 "log4rexx"

 4 Configuring 'log4rexx'

The log4rexx framework implements the ability to configure all loggers in a plain

text file, a so called "property file". Such a file contains line-delimited entries in the

form of pairs of key and their values delimited by an assignment character (=).

Following the Rexx philosophy the key is case independent (keys will be

uppercased), whereas the case and the leading and trailing blanks in the value are

preserved, as that may be significant (e.g. for StringMatchFilter).

Empty lines, and lines that start with a hash (#), a semi-colon (;), an exclamation

mark (!) or two consecutive dashes (--) are ignored.

When the framework starts up it first checks whether the environment symbol

".log4rexx.config.configFile" is defined and denotes an existing file. If so that file is

taken as the property file containing the configuration to be used by the log4rexx

framework. Otherwise the following directories are searched first for a file named

"log4rexx.properties", and if not found for a file named "simplelog4rexx.properties":

the current directory, the home directory of the log4rexx framework, and then all

directories listed in the PATH environment variable. The first hit will be taken and

that property file will be read and used for configuring the runtime. If no property

file can be found, then a default configuration is created, setting the environment

symbol "log4rexx.config.LoggerFactoryClassName" to "NoOpLog", which will make sure

that no log messages sent by applications cause an error, but also, that they will not

be processed.

The default configuration settings are depicted in figure 4.1.

If an option accepts a logical (Boolean) value, then one may use the values 0, "false"

or ".false" to represent the truth value "false" and the values 1, "true" or ".true" for

representating the truth value "true".

The configuration entries from a property file are stored as a log4rexx.Properties

object with the LogManager class attribute configuration.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 28 "log4rexx"

log4rexx.config.asyncMode =.false
log4rexx.config.configFile =.nil
log4rexx.config.configFileWatchInterval = 0
log4rexx.config.disable = LOWEST
log4rexx.config.disableOverride =.false
log4rexx.config.LoggerFactoryClassName = NoOpLog
log4rexx.config.LogLog.debug =.false
log4rexx.config.LogLog.quietMode =.false
log4rexx.config.version =101.20070423

Figure 4.1: The log4rexx Default Configuration.

As a general rule unknown entries (unknown keys) in the property file are simply

ignored and do not cause an error to be raised. This way it becomes possible to use

a single property file for 'log4rexx' and for 'log4j' as the lead-in string for the keys

will be different for both frameworks.

 4.1 Global Configuration Settings

Configuration settings that affect the overall execution of the framework start with

the lead-in string "log4rexx.config." and are stored in the ooRexx .local

environment. As such these entries can be retrieved using the environment symbol

notation, i.e. prepending the property name with a dot.

Figure 4.2 lists the overall configuration options with a brief description of their

purpose. It also documents the default configuration settings for loggers of type

"SimpleLog".

Key Brief Description

log4rexx.config.asyncMode If set to .true the logger processes the log message
asynchroneously. Default value: .false.

log4rexx.config.configFile If set, denotes the name of a configuration file.

log4rexx.config.configFileWatchInterval If set to a value greater than 0, then this is the interval time
in seconds to check whether the configuration file has been
changed, and if so re-read it and apply the changes to the
running system.

log4rexx.config.disable Determines the threshold log level in order for all the
loggers to process log messages. One of LOWEST, TRACE, DEBUG,
INFO, WARN, ERROR, FATAL, HIGHEST. Default value: lowest.

log4rexx.config.disableOverride If set to .true all log messages will be processed by the
loggers, independently of the setting
log4rexx.config.disable. Default value: .false.

log4rexx.config.LoggerFactoryClassName Set to the name of the logger class that should be used to
create loggers, one of Log, SimpleLog and NoOpLog. Default
value: NoOpLog.

log4rexx.config.LogLog.debug If set to .true the debug log messages from the log4rexx
framework classes are displayed. Default value: .false.

log4rexx.config.LogLog.quietMode If set to .true the warn and error in addition to the debug
log messages from the log4rexx framework classes are not
displayed. Default value: .false.

Default Settings for "SimpleLog" Loggers

log4rexx.config.simplelog.defaultLogLevel Determines the default threshold log level for SimpleLog
loggers. One of LOWEST, TRACE, DEBUG, INFO, WARN, ERROR, FATAL,
HIGHEST. Default value: info.

log4rexx.config.simplelog.showDateTime If set to .true then the date of the log message is displayed.
Default value: .false.

log4rexx.config.simplelog.showLoggerName If set to .true then the logger's name is displayed. Default
value: .false.

log4rexx.config.simplelog.showShortName If log4rexx.config.simplelog.showLoggerName is set to .true
and this option is set to .true then the last component of the
logger's name is displayed. Default value: .false.

Figure 4.2: Overall Configuration Keys with a Brief Description.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 29 "log4rexx"

 4.2 Logger Configuration Settings

Logger configuration settings start with the lead-in string "log4rexx.logger." If the

remaining string does not end in ".additivity" (for loggers of type "Log") or one (for

loggers of type "SimpleLog") of ".showDateTime", ".showLoggerName", ".showShortName",

then it is taken as the name of the logger. The name of a logger may contain dots,

which then separate the "components" of the logger's name.

The value part is a comma separated list of words, where the first word determines

the threshold log level, followed by one or more words which are the names of

defined appenders to which the logger should append the received log messages to.

Key Brief Description

log4rexx.logger.NAME Defines the NAME of the logger, which may contain dots. The
value is a list of comma-separated words, where the first word
denotes the threshold log level and the following words are
the names of defined appenders to which a log message
should be sent to.

log4rexx.logger.NAME.additivity Optional, if set to .false the logger named NAME will not send
the log message to its parent logger for further processing.
Default value: .true.

Figure 4.3: Configuration Keys for Loggers of Type "Log" with a Brief Description.

Figure 4.4 gives a few examples of defining and configuring loggers. Depending on

the setting of the environment symbol .log4rexx.config.LoggerFactoryClassName

either the class "Log", "SimpleLog" or "NoOpLog" is used to create the logger instances.

Figure 4.3 lists the configuration options for defining loggers of type "Log", figure

4.5 lists the configuration options for defining loggers of type "SimpleLog".

If the loggers are created using the "Log" class, the listed appenders are honored. If

the names of appenders are given, that do not exist, then an appropriate error log

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 30 "log4rexx"

-- define and configure a logger named "this.is.logger.one"
log4rexx.logger.this.is.logger.one=debug, appender1

-- define and configure a logger named "this.is", a parent logger to "this.is.logger.one"
log4rexx.logger.this.is=warn, appender3
-- do not forward log message to parent logger (would be "rootLogger" in this case)
log4rexx.looger.this.is.additivity=false

-- configure the "rootLogger" (will be created by the framework)
log4rexx.logger.rootLogger=error, appender2

-- define and configure a logger named "some.other.logger"
log4rexx.logger.some.other.logger=trace, appender1, appender2, appender3

-- define and configure a logger, supply settings, if the 'SimpleLog' class is used
log4rexx.logger.yet.another.logger = debug
log4rexx.logger.yet.another.logger.showDateTime=true
log4rexx.logger.yet.another.logger.showFileName=true
log4rexx.logger.yet.another.logger.showShortName=true

Figure 4.4: Examples for Defining and Configuring Loggers of Type "Log".

message is created to warn the user and the appender will be ignored. If the

appender queue is empty and the attribute additivity is set to its default value

.true, then log messages are forwarded to the logger's parent for further

processing. If no parent with the same stem exists then the framework's root logger

named rootLogger is taken as the parent logger.

Key Brief Description

log4rexx.logger.NAME Defines the NAME of the logger, which may contain dots. The
value is a list of comma-separated words, where the first word
denotes the threshold log level and the following words are
the names of appenders to which a log message should be
sent to.

log4rexx.logger.NAME.showDateTime Optional, if set to .true then the date of the log message is
displayed. Default value: .false.

log4rexx.logger.NAME.showLoggerName Optional, if set to .true then the logger's name is displayed.
Default value: .false.

log4rexx.logger.NAME.showShortName Optional, if log4rexx.logger.NAME.showLoggerName is set to .true
and this option is set to .true then the last component of the
logger's name is displayed. Default value: .false.

Figure 4.5: Configuration Keys for Loggers of Type "SimpleLog" with a Brief
Description.

 4.3 Appender Configuration Settings

Appender configuration settings start with the string "log4rexx.appender.". If the

remaining string does not contain a dot, then it is taken as the name of the appender.

The value part will denote the name of the appender class that should be used to

create the appender instance.

Figure 4.6 lists all the configuration options that all appenders possess. If the names

of filters are given, that do not exist, then an appropriate error log message is

created to warn the user and the filter will be ignored.

Key Brief Description

log4rexx.appender.NAME Defines the NAME of the appender, which must not contain any
dots. The value is the name of the appender class that should
be used to create the appender instance.

log4rexx.appender.NAME.filter Optional. The value is a list of comma-separated words, where
each word denotes the name of a defined filter to be used to
determine whether the appender should process the log
message.

log4rexx.appender.NAME.layout Optional. Names a defined layout to be used for formatting
the log message. Default value: .nil.

log4rexx.appender.NAME.requiresLayout Optional, if set to .true then a layout object is required for
this appender. Default value: .false.

log4rexx.appender.NAME.threshold Optional. Determines the default threshold log level for the
appender. One of LOWEST/ALL, TRACE, DEBUG, INFO, WARN, ERROR,
FATAL, HIGHEST/OFF/NONE. Default value: lowest.

Figure 4.6: Configuration Keys for All Appenders with a Brief Description.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 31 "log4rexx"

 4.3.1 ConsoleAppender Configuration Settings

A console appender has in addition to the settings in figure 4.6 the settings that are

documented and briefly described in figure 4.7.

Key Brief Description

log4rexx.appender.NAME.follow Optional, if set to .false then an attempt to change the target
attribute is not followed (is ignored). Default value: .true.

log4rexx.appender.NAME.immediateFlush Optional, if set to .false then the output of the log message
may be buffered. Default value: .true (flush the buffer after
writing the log message).

log4rexx.appender.NAME.target Optional, determines which standard file is to be used for
writing the log messages to: stdout or stderr . Default value:
stderr.

Figure 4.7: Configuration Keys for a ConsoleAppender with a Brief Description.

 4.3.2 FileAppender Configuration Settings

A file appender has in addition to the settings in figure 4.6 the settings that are

documented and briefly described in figure 4.8.

Key Brief Description

log4rexx.appender.NAME.append Optional, if set to .false then the file's content gets truncated
before starting to write the log messages to the file. Default
value: .true (append the log messages to the end of the file).

log4rexx.appender.NAME.bufferedIO Optional, if set to .true then the output of the log message
may be buffered. Default value: .false (flush the buffer after
writing the log message).

log4rexx.appender.NAME.fileName Optional, determines the filename, which may be fully
qualified. Default value: FileAppenderDefault.log.

Figure 4.8: Configuration Keys for a FileAppender with a Brief Description.

 4.3.2.1 DailyRollingFileAppender Configuration Settings

A daily rolling file appender allows automatic switching of the used log files on

predefined date/time intervals. It extends (specializes) the FileAppender above and

adds additional configuration settings as depicted in figure 4.9.

Key Brief Description

log4rexx.appender.NAME.rollType Optional. Allows setting the daily rolling type, which may be
one of: MINUTE, HOUR, HALF_DAY, DAY, WEEK, MONTH. Default value:
DAY.

Figure 4.9: Configuration Keys for a DailyRollingFileAppender with a Brief Description.

 4.3.2.2 RollingFileAppender Configuration Settings

A rolling file appender allows automatic switching of the used log file, if a

predefined file size gets exceeded. It extends (specializes) the FileAppender above

and adds additional configuration settings as depicted in figure 4.10 below.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 32 "log4rexx"

Key Brief Description

log4rexx.appender.NAME.maxBackupIndex Optional. A number which determines how many different
backup log files should be kept. If set to 0, then no backup file
is created and the log file will be deleted when rolling over.
Default value: 1.

log4rexx.appender.NAME.maxFileSize Optional. Indicates the maximum number of bytes in the file,
before a roll over occurs. The number can be followed by one
of kb, mb, gb, tb. Default value: 10mb.

Figure 4.10: Configuration Keys for a RollingFileAppender with a Brief Description.

 4.3.3 TelnetAppender Configuration Settings

A telnet appender has in addition to the settings in figure 4.6 the settings that are

documented and briefly described in figure 4.11 below.

Key Brief Description

log4rexx.appender.NAME.keepClients Optional, if set to .true then changing the value of the
attribute port will not cause established client connections to
be closed. Default value: .false.

log4rexx.appender.NAME.maxLogsInQueue Optional. A whole number determining the number of log
messages to be kept in a buffer. If a new client connects the
last maxLogsInQueue log messages are sent to it Default value:
25.

log4rexx.appender.NAME.port Optional, determines the TCP/IP socket port to listen for
clients to serve. Default value: 25 ("well known Telnet port").

Figure 4.11: Configuration Keys for a TelnetAppender with a Brief Description.

 4.4 Layout Configuration Settings

Layout configuration settings start with the string "log4rexx.layout.".

If the remaining string does not contain a dot, then it is taken as the name of the

layout. The value part will denote the name of the layout class that should be used

to create the layout instance.

Figure 4.12 lists all the configuration options that all layouts possess.

Key Brief Description

log4rexx.layout.NAME Defines the NAME of the layout, which must not contain any
dots. The value is the name of the layout class that should be
used to create the layout instance.

log4rexx.layout.NAME.contentType Optional. The content type in MIME format. Default value:
text/plain.

log4rexx.layout.NAME.footer Optional. A string that should be used as a footer. Default
value: empty string.

log4rexx.layout.NAME.header Optional. A string that should be used as a footer. Default
value: empty string.

Figure 4.12: Configuration Keys for All Layouts with a Brief Description.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 33 "log4rexx"

 4.4.1 PatternLayout Configuration Settings

A pattern layout has in addition to the settings in figure 4.12 the settings that are

documented and briefly described in figure 4.13.

Key Brief Description

log4rexx.layout.NAME.conversionPattern Optional, a string containing a conversion pattern. Default
value: %5N: %r [%c] %-5p - %m%n.

Figure 4.13: Configuration Keys for a PatternLayout with a Brief Description.

 4.4.1.1 HTMLLayout Configuration Settings

A HTML layout allows formatting log messages as HTML marked up text, following

the conversionPattern attribute, which is set to the following default value:

%f{LogNr}%N %f{DateTime}%d %f{ElapsedTime}%r %f{Logger}[%c] %f{LogLevel} %^p %f{Message}%-m

It extends (specializes) the PatternLayout above and adds additional configuration

settings as depicted in figure 4.14.

Key Brief Description

log4rexx.layout.NAME.styleSheetName Optional string which denotes the name of a cascading style
sheet file. Default value: empty string.

log4rexx.layout.NAME.useStyleSheet Optional, if set to .false then no style information is
generated. If set to .true, and a styleSheetName is given, a link
to that CSS file is inserted, otherwise a style element is
created for the HTML head element. Default value: .true.

Figure 4.14: Configuration Keys for a HTMLLayout with a Brief Description.

 4.4.1.2 XMLLayout Configuration Settings

A XML layout allows formatting log messages as XML marked up text, following the

conversionPattern attribute, which is set to the following default value:

#%N: %d %r [%c] %-5p - %m%n

It extends (specializes) the PatternLayout above and adds additional configuration

settings as depicted in figure 4.15.

Key Brief Description

log4rexx.layout.NAME.processInstruction Optional string which denotes one or more fully formed PI
(process instructions) which will be inserted in the XML
header. Default value: empty string.

Figure 4.15: Configuration Keys for a XMLLayout with a Brief Description.

 4.5 Filter Configuration Settings

Filter configuration settings start with the string "log4rexx.filter.". If the

remaining string does not contain a dot, then it is taken as the name of the filter. The

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 34 "log4rexx"

value part will denote the name of the filter class that should be used to create the

filter instance. Figure 4.16 lists the configuration options that all filters possess.

Key Brief Description

log4rexx.filter.NAME Defines the NAME of the filter, which must not contain any dots.
The value is the name of the filter class that should be used to
create the filter instance.

log4rexx.filter.NAME.acceptOnMatch Optional logical value. Default value: .true.

Figure 4.16: Configuration Keys for All Filters with a Brief Description.

 4.5.1 DateRangeFilter Configuration Settings

A date range filter has in addition to the settings in figure 4.16 the settings that are

documented and briefly described in figure 4.17 below.

Key Brief Description

log4rexx.filter.NAME.dateMin Optional, a sorted (formatted as "YYYYMMDD") date. Default
value: 00010101.

log4rexx.filter.NAME.dateMax Optional, a sorted (formatted as "YYYYMMDD") date. Default
value: 99991231.

Figure 4.17: Configuration Keys for a DateRangeFilter with a Brief Description.

 4.5.2 LevelMatchFilter Configuration Settings

A level match filter has in addition to the settings in figure 4.16 the setting that is

documented and briefly described in figure 4.18 below.

Key Brief Description

log4rexx.filter.NAME.logLevelToMatch Optional, one of LOWEST/ALL, TRACE, DEBUG, INFO, WARN, ERROR,
FATAL, HIGHEST/OFF/NONE. Default value: lowest.

Figure 4.18: Configuration Keys for a LevelMatchFilter with a Brief Description.

 4.5.3 LevelRangeFilter Configuration Settings

A level range filter has in addition to the settings in figure 4.16 the settings that are

documented and briefly described in figure 4.19 below.

Key Brief Description

log4rexx.filter.NAME.logLevelMin Optional, one of LOWEST/ALL, TRACE, DEBUG, INFO, WARN, ERROR,
FATAL, HIGHEST/OFF/NONE. Default value: lowest.

log4rexx.filter.NAME.logLevelMax Optional, one of LOWEST/ALL, TRACE, DEBUG, INFO, WARN, ERROR,
FATAL, HIGHEST/OFF/NONE. Default value: highest.

Figure 4.19: Configuration Keys for a LevelMatchFilter with a Brief Description.

 4.5.4 MonthRangeFilter Configuration Settings

A month range filter has in addition to the settings in figure 4.16 the settings that

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 35 "log4rexx"

are documented and briefly described in figure 4.20 below.

Key Brief Description

log4rexx.filter.NAME.monthMin Optional, either the number (e.g. "1" for January) of the month
or the English name of the month (e.g. January). Default value:
1.

log4rexx.filter.NAME.monthMax Optional, either the number (e.g. "12" for December) of the
month or the English name of the month (e.g.December).
Default value: 12.

Figure 4.20: Configuration Keys for a MonthRangeFilter with a Brief Description.

 4.5.5 StringMatchFilter Configuration Settings

A string match filter has in addition to the settings in figure 4.16 the settings that

are documented and briefly described in figure 4.21 below.

Key Brief Description

log4rexx.filter.NAME.ignoreCase Optional, if set to .true then the stringToMatch is caselessly
compared with the log message text. Default value: .false.

log4rexx.filter.NAME.stringToMatch Optionally a string. Default value: empty string.

Figure 4.21: Configuration Keys for a StringMatchFilter with a Brief Description.

 4.5.6 TimeRangeFilter Configuration Settings

A time range filter has in addition to the settings in figure 4.16 the settings that are

documented and briefly described in figure 4.22 below.

Key Brief Description

log4rexx.filter.NAME.timeMin Optional, a time of day in the form "mm:hh". Default value:
00:00.

log4rexx.filter.NAME.timeMax Optional, a time of day in the form "mm:hh". Default value:
23:59.

Figure 4.22: Configuration Keys for a TimeRangeFilter with a Brief Description.

 4.5.7 WeekdayRangeFilter Configuration Settings

A weekday range filter has in addition to the settings in figure 4.16 the settings that

are documented and briefly described in figure 4.23 below.

Key Brief Description

log4rexx.filter.NAME.weekdayMin Optional, either the number (e.g. "1") for the day of the week
or its English name (e.g. Monday). Default value: 1.

log4rexx.filter.NAME.weekdayMax Optional, either the number (e.g. "7") for the day of the week
or its English name (e.g. Sunday). Default value: 7.

Figure 4.23: Configuration Keys for a WeekdayRangeFilter with a Brief Description.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 36 "log4rexx"

 5 Summary and Outlook

This article introduced the new log4rexx framework that got created for the 18th

International Rexx Symposium in 2007. The framework is closely modelled after

Apache's log4j, but takes advantage of some of ooRexx features, like the

"environment" which serves as a globally available directory to ooRexx programs for

storing configuration data and the log4rexx classes. Therefore e.g. the LogManager

class object can be directly referenced via its environment symbol .LogManager.

The names of configuration keys for property files are systemized, in that global

configuration options must start with the string "log4rexx.configuration." Layouts

and filters are named and can therefore be re-used for different appenders.

Taking advantage of log4rexx is easy, one merely nees to write a statement to "call

load_log4rexx.rex". It is possible to set global configuration settings for the log4rexx

framework, before calling it, by defining the global configuration settings as entries

in the .local ooRexx environment.

After the initialization of the log4rexx framework, one is able to retrieve a logger at

any time by merely asking the .LogManager for it by name (sending it the message

getLogger('name.of.logger'). If a logger by that name does not exist yet, it will be

created with the default values and stored in the .LogManager directory of loggers.

The returned logger immediately allows for sending log messages at different levels

to it, depending on the message one sends to the logger (trace, debug, info, warn,

error, fatal).

The entire framework can be easily extended, such as to add new appenders (e.g.

mail or instant messaging appenders which may send failure log messages), layouts

and filters. Its source is open and freely available and should serve as a

documentation for the APIs, given the comments supplied in the source code. As

log4j was used to model log4rexx it should be possible to use the log4j

documentation, tutorial and articles to learn more how this style of logging can be

applied and taken advantage from. Also, one can draw many ideas from the ongoing

development of log4j which could be applied to log4rexx, if they look promising or

benefitial.

A last remark: the ooRexxUnit framework [Flat06] was heavily used to create unit tests

for the methods of the classes and routines of the log4rexx framework.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 37 "log4rexx"

 6 References

[Cow90] Cowlishaw, M.F.: "The REXX Language", Prentice-Hall (Second edition),

1990.

[Flat06] Flatscher R.G.: "ooRexxUnit: A JUnit Compliant Testing Framework for

ooRexx Programs", in: Proceedings of the "The 2006 Interational Rexx

Symposium", Austin, Texas, U.S.A. April 9th – April 13th 2006.

[Fos05] Fosdick H.: "Rexx Programmer’s Reference", John Wiley & Sons, ISBN: 0-

7645-7996-7, URL (as of 2007-04-22):

http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764579967.html

[ooRexx] URL (as of 2007-04-22): http://www.ooRexx.org

[Rexx] URL (as of 2007-04-22): http://www.Rexx.org

[RexxInfo]URL (as of 2007-04-22): http://www.RexxInfo.org

[RexxLA] URL (as of 2007-04-22): http://www.RexxLA.org

[VeTrUr] Veneskey G.L., Trosky W., Urbaniak J.J.: "Object Rexx by Example", Aviar. URL

(as of 2007-04-22): http://www.oops-web.com/orxbyex/

[W3G02] Gülcü C.: "Short introduction to log4j", URL (as of 2007-04-22):

http://logging.apache.org/log4j/docs/manual.html

[W3G04] Homepage of Gülcü C.: "The complete log4j manual", PDF book, last updated:

2004-12-12, URL (as of 2007-04-22):

https://www.qos.ch/shop/products/log4j/log4j-Manual.jsp

[W3L4J] Homepage of Apache's 'log4j' Framework, URL (as of 2007-04-22):

http://logging.apache.org/log4j/docs/

[W3L4R] Homepage for the 'log4rexx' Framework, URL (as of 2007-04-22):

http://wi.wu-wien.ac.at/rgf/rexx/orx18/log4rexx/

[W3LOG] Homepage of Apache's "Logging Services", URL (as of 2007-04-22):

http://logging.apache.org/

[W3M05] Mills A.J.S.: "Log4J", URL (as of 2007-04-22):

http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/tutorials/log4j/log4j.html

[W3OORC] Code repository for ooRexx (as of 2007-04-22):

http://oorexx.cvs.sourceforge.net/oorexx/

[W3ORUC] Code repository for ooRexxUnit (as of 2007-04-22):

http://oorexx.svn.sourceforge.net/viewvc/oorexx/test/

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 38 "log4rexx"

http://www.ooRexx.org/
http://www.RexxLA.org/
http://www.ooRexx.org/

[W3S01] Vipan S.: "Don't Use System.out.println! Use Log4j", URL (as of 2007-04-22):

http://www.vipan.com/htdocs/log4jhelp.html

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 39 "log4rexx"

This version of the article changed the name of the framework from 'log4r' to
'log4rexx' to match the programs which were changed accordingly. This was
motivated by the fact that there has been already an implementation of the 'log4j'
framework in Ruby which has been known as 'log4r' before the ooRexx
implementation got created and implemented.

Rony G. Flatscher, Vienna, Austria. 2007-05-17

 7 Appendix A. Example "log4rexx.properties"

The log4rexx framework is distributed with an example "log4rexx.properties" file

which originally looked like the one of this appendix.

; Sample "log4rexx.properties" file, Rony G. Flatscher, 2007-04-22
;
; a simple 'log4rexx' sample configuration file
;
; - entries are strings in the form: key=value
; attention: case of key is irrelevant (as in Rexx everything gets translated to uppercase)
;
; - empty lines or lines starting with ';' or '#' or '!' or '--' are ignored
;
; - these are the defined logLevels: TRACE < DEBUG < INFO < WARN < ERROR < FATAL
; just send messages of one of those logLevel names to a logger
;
; - anytime you need a logger, get it by querying the ".LogManager", e.g.:
;
; aLogger=.LogManager~getLogger("rootLogger") -- get the rootLogger
;
; then send a log message, e.g.:
;
; aLogger~trace("This is a trace message")
; aLogger~debug("This is a debug message")
; aLogger~info("This is an info message")
; aLogger~warn("A condition got raised!", condition('O'))
; aLogger~error("This is an error message")
; aLogger~fatal("This is a fatal (error) message")

==
; turn on 'log4rexx' framework debugging:
log4rexx.config.LogLog.debug=1
;
; turn even logging of framework warnings and errors off:
log4rexx.config.LogLog.quietMode=1
;
==

====================== define and configure loggers
---------------------- logger named "rootLogger" (this logger is always available)
;
-- name of the following logger: "rootLogger"
; send logs at level "DEBUG" or higher to the appender named "DEST_APP1"
log4rexx.logger.rootLogger = debug, dest_app1

---------------------- logger named "rgf.sockets" (meant to serve 'rgf.sockets.cls' module)
;
; send logs at level "TRACE" or higher to the appender named "RGF_APP1" and "RGF_APP2"
-- name of the following logger: "RGF.SOCKETS"
log4rexx.logger.RGF.SOCKETS = debug, rgf_app1, rgf_app2
;
; if 'additivity' is .true (default), then log messages are sent to the parent logger
log4rexx.logger.rgf.sockets.additivity=false

; ... continued on next page ...

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 40 "log4rexx"

====================== define and configure appenders
; ---------------------- appender named "DEST_APP1"
log4rexx.appender.DEST_APP1 =ConsoleAppender
log4rexx.appender.dest_app1.ImmediateFlush=true
log4rexx.appender.dest_app1.layout =pat_layout1
log4rexx.appender.dest_app1.Target =stderr

; ---------------------- appender named "RGF_APP1"
log4rexx.appender.RGF_APP1 =ConsoleAppender
log4rexx.appender.rgf_app1.filter =weekDays,workingHours
log4rexx.appender.rgf_app1.ImmediateFlush =1
log4rexx.appender.rgf_app1.layout =pat_layout1
log4rexx.appender.rgf_app1.Target =.error

; ---------------------- appender named "RGF_APP2"
log4rexx.appender.RGF_APP2 = FileAppender
log4rexx.appender.rgf_app2.filter = weekDays,workingHours
log4rexx.appender.rgf_app2.layout = html_layout1
log4rexx.appender.rgf_app2.fileName = rgf_app2_appender.html
log4rexx.appender.rgf_app2.append = false
log4rexx.appender.rgf_app2.bufferedIO = false

; ---------------------- appender named "RGF_APP3"
log4rexx.appender.RGF_APP3 = TelnetAppender
log4rexx.appender.rgf_app3.layout = pat_layout1
log4rexx.appender.rgf_app3.maxLogsInQueue = 50
;
; uncomment to ignore all logs up to, but not including level 'WARN'
; log4rexx.appender.rgf_app3.Threshold = warn

====================== define and configure layouts
; ---------------------- layout named "PAT_LAYOUT1"
log4rexx.layout.PAT_LAYOUT1 =PatternLayout
log4rexx.layout.pat_layout1.conversionPattern=%5N: %r [%c] %-5p - %m%n

; ---------------------- layout named "HTML_LAYOUT1"
log4rexx.layout.HTML_LAYOUT1 =HTMLLayout
log4rexx.layout.html_layout1.conversionPattern=%5N: %r [%c] %-5p - %m%n

====================== define and configure filters
; ---------------------- filter named "WEEKDAYS"
log4rexx.filter.WeekDays =WeekdayRangeFilter
log4rexx.filter.weekdays.weekdayMin =Monday
log4rexx.filter.weekdays.weekdayMax =Friday
log4rexx.filter.weekdays.acceptOnMatch=true

; ---------------------- filter named "WEEKEND"
log4rexx.filter.WeekEnd =WeekdayRangeFilter
log4rexx.filter.weekend.weekdayMin =Monday
log4rexx.filter.weekend.weekdayMax =Friday
log4rexx.filter.weekend.acceptOnMatch =false

; ---------------------- filter named "WORKINGHOURS"
log4rexx.filter.WorkingHours =TimeRangeFilter
log4rexx.filter.workinghours.timeMin =08:00
log4rexx.filter.workinghours.timeMax =18:00
log4rexx.filter.workinghours.acceptOnMatch=true

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 41 "log4rexx"

 8 Appendix B. Example "simplelog4rexx.properties"

The log4rexx framework is distributed with an example "simplelog4rexx.properties"

file which originally looked like this appendix.

; 2007-01-22, ---rgf, a "simplelog.properties" file, gets processed by the "SimpleLog" class and
; entries are strings in the form: key=value
; empty lines or lines starting with ';' or '#' are ignored

==
; turn on 'log4rexx' framework debugging:
log4rexx.config.LogLog.debug=1
;
; turn even logging of framework warnings and errors off:
log4rexx.config.LogLog.quietMode=1
;
==

==
====================== define defaults for 'SimpleLog' loggers

; 'showDateTime', values: 1 | [.]true or 0 [.]false
log4rexx.config.simplelog.showDateTime = 0

; 'showLogName', values: 1 | [.]true or 0 [.]false
log4rexx.config.simplelog.showLoggerName = 0

; 'showShortName', values: 1 | [.]true or 0 [.]false
log4rexx.config.simplelog.showShortName = 0

; 'defaultLog', possible values: ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF
log4rexx.config.simplelog.defaultLogLevel = WARN

==
====================== define 'SimpleLog' loggers

; 'logLevel' defaults to "INFO", values: ALL < TRACE < DEBUG < INFO < WARN < ERROR < FATAL < OFF
;
; 'logLevel': log messages starting at the following level will be processed:
-- name of the following logger: "a_simple_logger_1"
log4rexx.logger.a_simple_logger_1 =

-- name of the following logger: "a_simple_logger_2"
log4rexx.logger.a_simple_logger_2 = warn
log4rexx.logger.a_simple_logger_2.showDateTime = true
log4rexx.logger.a_simple_logger_2.showLoggerName = false
log4rexx.logger.a_simple_logger_2.showShortName = true

-- name of the following logger: "a.simple.logger.3"
log4rexx.logger.a.simple.logger.3 = error
log4rexx.logger.a.simple.logger.3.showDateTime = true
log4rexx.logger.a.simple.logger.3.showLoggerName = true
log4rexx.logger.a.simple.logger.3.showShortName = true

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 42 "log4rexx"

 9 Appendix C. The "rgf.sockets" Class Library

In the context of creating the log4rexx framework, there was a need for using

TCP/IP sockets, in order to be able to create the TelnetAppender. Due to licensing

issues the author decided to implement an ooRexx class for a TCP/IP socket and one

for a TCP/IP socket servicing incoming connections (a "socket server").

The program "rgf.sockets.cls" contains both class definitions and is available in

open source and for free. It wraps the external socket function library that comes

with ooRexx, therefore the commented source code can be used together with the

documentation of the "RxSock" package (cf. the PDF file named "rxsock.pdf" of the

ooRexx distribution) and should fully document the APIs that are available to those

who wish to employ the "rgf.sockets" class library.

To ease the mastering of these two classes figure 9.1 depicts the class hierarchy and

the defined methods (class methods are shown in bold), such that the reader gains

an immediate overview and is able to navigate to those methods in the source code

which need to be studied.

This class library employs logging itself, and makes the logger object available via

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 43 "log4rexx"

Figure 9.1: The "rgf.sockets" Class Hierarchy with the Defined Methods.

Object

Rgf.Socket

init getSocketOptionS send
getHostAddress last_errno[=] sendBufferSize[=]
getHostAddresses last_h_errno[=] sendTimeout[=]
getHostAliases last_SocketAction[=] setLastErrors
getHostName listen setSocketOption
socketLibraryVersion[=] localAddress shutdown
socketOptionNames[=] localHostName socketDescriptor[=]
init localPort socketIOCTL
uninit nonBlockingMode[=] socketType
bind receive string
checkInterval[=] receiveBufferSize[=] waitForException
clearLastErrors receiveTimeout[=] waitForReceive
close remoteAddress waitForSend
connect remoteHostName
getSocketOption remotePort

Rgf.ServerSocket

init
accept
close
isAccepting
nonBlockingAccept
serverPort[=]
stopAccepting

the environment symbol (note the leading dot!) ".rgf.sockets.logger" and if the

log4rexx framework is available, this logger will be retrievable via the .LogManager

class by the name "rgf.sockets", e.g. with the following statement:

logger=.LogManager~getLogger("rgf.sockets")

However, there is an "emergency logger implementation" built-in, such that the

log4rexx framework needs not to be available for this class library to work!

Because of this, every Rexx program that uses this class library becomes able to use

the class library's built-in log messages for its own debugging purposes!

Figure 9.2 depicts a simple Rexx program that tries to connect to the well defined

http port of a non-existing host (wrongly spelled).

The output of running the program in figure 9.2 is shown in figure 9.3.

The slightly changed program is depicted in figure 9.4. It activates the signal

handling on any condition such that the program is not forcefully stopped in case of

an error.

The output of running the program in figure 9.4 is shown in figure 9.5.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 44 "log4rexx"

call rgf.sockets.cls /* get the socket classes */

s=.rgf.socket~new /* get a socket */
hostId="www.RexxLA.orgHHH" /* set hostname */
port =80 /* set port number */

res=s~connect(hostId, port)
say "res="res "(0=success, -1=error)"

Figure 9.2: Program "t4socket.rex" Using the "rgf.sockets.cls" Class Library.

 547 *-* RAISE SYNTAX 93.900 array("'"address~string"' cannot be resolved!") -- not a positive,
whole number
 7 *-* res=s~connect(hostId, port)
Error 93 running F:\work\log4ooRexx\rgf.sockets.cls line 547: Incorrect call to method
Error 93.900: 'www.RexxLA.orgHHH' cannot be resolved!

Figure 9.3: Console Output of Running "rexx t4socket.rex".

call rgf.sockets.cls /* get the socket classes */

s=.rgf.socket~new /* get a socket */
hostId="www.RexxLA.orgHHH" /* set hostname */
port =80 /* set port number */
signal on any
res=s~connect(hostId, port)
say "res="res "(0=success, -1=error)"
exit

any:
 say -2 /* indicate problem in the API */

Figure 9.4: Program "t5socket.rex": Activates Signal Handling for Stopping Quietly..

The program in figure 9.6 demonstrates how easy it is to access the class library's

logger via its environment symbol (".rgf.sockets.logger").

By default the "rgf.sockets" class library creates a "no-operation" type of an

"EmergencyLogger" in the case that the log4rexx framework is not loaded yet. If

processing of log messages is desired, one may define the environment symbol

".rgf.sockets.processLogs" with a value of .true, which will cause the creation of an

"EmergencyLogger" that processes the socket class library log messages.

After retrieving the logger its log level will be set to "DEBUG" to get to see all debug

messages from this point in time on.9

The output of running the program in figure 9.6 is shown in figure 9.7.

Figure 9.8 just inserts the call to the log4rexx framework as the very first statement,

before calling the "rgf.sockets" class library. As a result that class library now uses

9 To later turn off the processing of log messages altogher one would merely need to state:

.rgf.sockets.logger~logLevel="OFF"

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 45 "log4rexx"

-2

Figure 9.5: Console Output of Running "rexx t5socket.rex".

 /* let the "rgf.sockets" class library know, that we want
 it to process log messages, even if 'log4rexx' is not available */
.local~rgf.sockets.processLogs=.true
call rgf.sockets.cls /* get the socket classes */
.rgf.sockets.logger~logLevel="debug" /* activate processing for log messages >= "DEBUG" */

s=.rgf.socket~new /* get a stream socket */
hostId="www.RexxLA.orgHHH" /* set hostname */
port =80 /* set port number */
signal on any
res=s~connect(hostId, port) /* connect the socket */
say "res="res "(0=success, -1=error)"
exit

any:
 .rgf.sockets.logger~fatal("oops!", condition("o"))
 say -2 /* indicate problem in the API */

Figure 9.6: Program "t6socket.rex": Activate Processing of "DEBUG" Log Messages.

Debug - 2007-04-25 13:41:59.589000: (a rgf.Socket: 4012F31F) - Socket.init | type=[], socketDescriptor=[]
Debug - 2007-04-25 13:41:59.589000: (a rgf.Socket: 4012F31F) - Socket.setLastErrors | last_ERRNO=[],
last_H_ERRNO=[], last_SocketAction=[]
Debug - 2007-04-25 13:41:59.589000: (a rgf.Socket: 4012F31F) - Socket.init | socketDescriptor=[196]
Debug - 2007-04-25 13:41:59.589000: (a rgf.Socket: 4012F31F) - Socket.connect | received
address=[www.RexxLA.orgHHH], port=[80]
Debug - 2007-04-25 13:41:59.589000: (a String: 9D454C46) - getHostInfos() | host=[www.RexxLA.orgHHH],
switch=[2]
Fatal - 2007-04-25 13:41:59.599000: a Directory - oops!
-2
Debug - 2007-04-25 13:41:59.599000: (a rgf.Socket: 4012F31F) - Socket.uninit | socketDescriptor=[196]

Figure 9.7: Console Output of Running "rexx t6socket.rex".

a logger from the log4rexx framework configured according to the

"log4rexx.properties" (or if not found: "simplelog4rexx.properties") file instead of its

own one (dubbed "EmergencyLogger"). If the "log4rexx.properties" file is configured as

in Appendix A above (cf. chapter 7, p. 40, logger configuration for the logger named

"rgf.sockets"), then the log messages will also be sent to a HTML appender.

The output of running the program in figure 9.8 is shown in figure 9.9 and in figure

9.10.

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 46 "log4rexx"

call load_log4rexx /* load the 'log4rexx' framework first */

call rgf.sockets.cls /* get the socket classes */
.rgf.sockets.logger~logLevel="debug" /* <--- */

s=.rgf.socket~new /* get a stream socket */
hostId="www.RexxLA.orgHHH" /* set hostname */
port =80 /* set port number */
signal on any
res=s~connect(hostId, port) /* connect the socket */
say "res="res "(0=success, -1=error)"
exit

any:
 .rgf.sockets.logger~fatal("oops!", condition("o"))
 say -2 /* indicate problem in the API */

Figure 9.8: Program "t7socket.rex": Use the log4rexx Framework for Logging.

 1: 0.280000 [rgf.sockets] DEBUG - Socket.init | type=[], socketDescriptor=[]
 2: 0.310000 [rgf.sockets] DEBUG - Socket.setLastErrors | last_ERRNO=[], last_H_ERRNO=[],
last_SocketAction=[]
 3: 0.330000 [rgf.sockets] DEBUG - Socket.init | socketDescriptor=[200]
 4: 0.340000 [rgf.sockets] DEBUG - Socket.connect | received address=[www.RexxLA.orgHHH], port=[80]
 5: 0.350000 [rgf.sockets] DEBUG - getHostInfos() | host=[www.RexxLA.orgHHH], switch=[2]
 6: 0.370000 [rgf.sockets] FATAL - oops!

ADDITIONAL..[an Array] containing 1 item(s)
 --> ['www.RexxLA.orgHHH' cannot be resolved!]
CODE........[93.900]
CONDITION...[SYNTAX]
DESCRIPTION.[]
ERRORTEXT...[Incorrect call to method]
INSTRUCTION.[SIGNAL]
MESSAGE.....['www.RexxLA.orgHHH' cannot be resolved!]
POSITION....[547]
PROGRAM.....[F:\work\log4ooRexx\rgf.sockets.cls]
PROPAGATED..[1]
RC..........[93]
TRACEBACK...[a List] containing 1 item(s)
 --> [547 *-* RAISE SYNTAX 93.900

array("'"address~string"' cannot be resolved!") -- not a positive, whole number]

-2
 7: 0.410000 [rgf.sockets] DEBUG - Socket.uninit | socketDescriptor=[200]

Figure 9.9: Console Output of Running "rexx t7socket.rex".

Rony G. Flatscher (Version as of: 2007-05-17 23:38) 47 "log4rexx"

Figure 9.10: The HTML Appender Output of Running "rexx t7socket.rex".

	 1 Introduction
	 2 An Example of Putting 'log4rexx' to Work
	 3 The 'log4rexx' Architecture
	 3.1 The Infrastructural 'log4rexx' Classes
	 3.1.1 The “LogLog” Class
	 3.1.2 The “LogManager” Class
	 3.1.3 The “log4rexx.Properties” Class
	 3.1.4 The “log4rexx.Timing” Class

	 3.2 The Logger 'log4rexx' Classes
	 3.2.1 The “Log” Class
	 3.2.2 The “SimpleLog” Class
	 3.2.3 The “NoOpLog” Class

	 3.3 The Appender 'log4rexx' Classes
	 3.3.1 The “Appender” Class
	 3.3.2 The “ConsoleAppender” Class
	 3.3.3 The “FileAppender” Class
	 3.3.4 The “RollingFileAppender” Class
	 3.3.5 The “DailyRollingFileAppender” Class
	 3.3.6 The “NullAppender” Class
	 3.3.7 The “TelnetAppender” Class8

	 3.4 The Layout 'log4rexx' Classes
	 3.4.1 The “Layout” Class
	 3.4.2 The “SimpleLayout” Class
	 3.4.3 The “PatternLayout” Class
	 3.4.4 The “HTMLLayout” Class
	 3.4.5 The “XMLLayout” Class

	 3.5 The Filter 'log4rexx' Classes
	 3.5.1 The “Filter” Class
	 3.5.2 The “DateRangeFilter” Class
	 3.5.3 The “DenyAllFilter” Class
	 3.5.4 The “LevelMatchFilter” Class
	 3.5.5 The “LevelRangeFilter” Class
	 3.5.6 The “MonthRangeFilter” Class
	 3.5.7 The “StringMatchFilter” Class
	 3.5.8 The “TimeRangeFilter” Class
	 3.5.9 The “WeekdayRangeFilter” Class

	 4 Configuring 'log4rexx'
	 4.1 Global Configuration Settings
	 4.2 Logger Configuration Settings
	 4.3 Appender Configuration Settings
	 4.3.1 ConsoleAppender Configuration Settings
	 4.3.2 FileAppender Configuration Settings
	 4.3.2.1 DailyRollingFileAppender Configuration Settings
	 4.3.2.2 RollingFileAppender Configuration Settings

	 4.3.3 TelnetAppender Configuration Settings

	 4.4 Layout Configuration Settings
	 4.4.1 PatternLayout Configuration Settings
	 4.4.1.1 HTMLLayout Configuration Settings
	 4.4.1.2 XMLLayout Configuration Settings

	 4.5 Filter Configuration Settings
	 4.5.1 DateRangeFilter Configuration Settings
	 4.5.2 LevelMatchFilter Configuration Settings
	 4.5.3 LevelRangeFilter Configuration Settings
	 4.5.4 MonthRangeFilter Configuration Settings
	 4.5.5 StringMatchFilter Configuration Settings
	 4.5.6 TimeRangeFilter Configuration Settings
	 4.5.7 WeekdayRangeFilter Configuration Settings

	 5 Summary and Outlook
	 6 References
	 7 Appendix A. Example "log4rexx.properties"
	 8 Appendix B. Example "simplelog4rexx.properties"
	 9 Appendix C. The "rgf.sockets" Class Library

