
Hard to do in Java
Easy to do in Rexx

René Vincent Jansen
Rexx LA 2007
Tampa, Florida

1

There is no doubt that Java is the COBOL of this day
and age, and its influence is all pervasive in enterprise
software.

For some tasks however, its statically checked type
system and its inflexible approach to the run time
treatment of classes defeats the purpose. In this
presentation I would like to show that for some tasks
the more dynamic approach of Object Rexx gets the
job done more easily and efficiently.

Most examples are from an existing system where
the Java way of thinking has bitten us and we are
pursueing an alternative approach combining
NetRexx (Java) and ooRexx, linked by BSF for Rexx.

2

3

Interestingly, Rexx is at the same time an accepted
piece of proven technology and an advanced oo-
technology that is at the vanguard of more research
oriented companies.

If not the proof of this, a nice illustration is what
results are for queries for different technologies in
Google Trends.

The theory that is here introduced, is that
technologies that are in a very mature phase receive
more hits from offshore automation centres, where
state-of-the-art forward looking, research oriented
technologies receive more queries from the US and
Europe.

I’ll make the case here for Java, XML, Ruby and
Rexx.

4

This is the baseline of this comparison: the modern
day status of COBOL in the world.

5

Java is queried most by outsourcing companies in
India

6

XML is no surprise; seen as a sine qua non, not very
widely loved but no real alternative after global
acceptance.

Good for data, better for computers, not for human
consumption. There is no better choice for data
exchange. On the other hand: lots of configuration
files are needlessly complex through needless usage
of xml.

My guess here is that the high number for San Jose
has to do with the XPATH and XQUERY efforts from
IBM Research and the XML features in DB2.

7

On the other hand, JSON is a trendy would-be
replacement for XML.

As it is very modern, there are queries from US (West
Coast) and Europe.

The numbers might indicate that Bangalore has more
research oriented activity than for example Chennai
or Mumbai. (The modern names for Madras and
Bombai).

8

Ruby is the most hyped oo scripting language at the
moment, and the absolute winner at the moment if
we measure by book sales. Here we see the trend
showing most queries from the US West Coast.

Following the here presented theory this indicates
interest from research communities and the fact that
is is not yet accepted as proven technology.

9

Rexx is at the same time an established scripting
language, with lots of queries from India, doubtlessly
for its use as the glue for older, traditional apps that
have been offshored, but also leading edge, with the
more research-oriented, agile US companies
querying it in Google.

My interpretation here is that there is a distinct
possibility that the US and Europe queries concern
ooRexx, while the offshoring country queries concern
mostly Classic Rexx - or Mainframe Rexx.

There is of course no solid proof for this.

Hard to do in Java, Easy to do in Rexx
Procedurally

Debugging and Trace

Accessor Methods

10

Trace R

Trace
Debugging server side code is very bothersome without trace

Ask anyone who needs to connect a remote debugger to some server
code and suffer the performance

Trace literally zips through the code and lets you catch the error
quickly

It pays off to have sensible tracing criteria and limit output

11

Accessor Methods
Java programmers have to count on the IDE to have this
generation facility

NetRexx has properties indirect

ooRexx has accessor properties that use the = operator

12

Acces

Dynamic

Hard to do in Java, Easy to do in Rexx
Codewise

Dynamically built Classes and Methods

Duck Typing

Aspect Oriented Programming

Metaclasses and metaprograming

Getting to method source and changing it

Code blocks and Interpret

Lispy things

13

Dynamically
building classes

and methods
All without byte code manipulation

14

Dynamic

Dynamic Class Construction

ooRexx can build classes by just sending messages

But why would you do that?

Model driven development, forward engineering of just modelled data

Hard - to impossible - in Java

Have to revert to byte code engineering frameworks like BCEL, ASM

Then, most of the time, have to write “Java Assembler”

15

16

 ClassWriter cw = new ClassWriter(0);
 cw.visit(V1_1, ACC_PUBLIC, "Example", null, "java/lang/Object", null);

 // creates a MethodWriter for the (implicit) constructor
 MethodVisitor mw = cw.visitMethod(ACC_PUBLIC,
 "<init>",
 "()V",
 null,
 null);
 // pushes the 'this' variable
 mw.visitVarInsn(ALOAD, 0);
 // invokes the super class constructor
 mw.visitMethodInsn(INVOKESPECIAL, "java/lang/Object", "<init>", "()V");
 mw.visitInsn(RETURN);
 // this code uses a maximum of one stack element and one local variable
 mw.visitMaxs(1, 1);
 mw.visitEnd();

 // creates a MethodWriter for the 'main' method
 mw = cw.visitMethod(ACC_PUBLIC + ACC_STATIC,
 "main",
 "([Ljava/lang/String;)V",
 null,
 null);
 // pushes the 'out' field (of type PrintStream) of the System class
 mw.visitFieldInsn(GETSTATIC,
 "java/lang/System",
 "out",
 "Ljava/io/PrintStream;");
 // pushes the "Hello World!" String constant
 mw.visitLdcInsn("Hello world!");
 // invokes the 'println' method (defined in the PrintStream class)
 mw.visitMethodInsn(INVOKEVIRTUAL,
 "java/io/PrintStream",
 "println",
 "(Ljava/lang/String;)V");
 mw.visitInsn(RETURN);
 // this code uses a maximum of two stack elements and two local
 // variables
 mw.visitMaxs(2, 2);
 mw.visitEnd();

 // gets the bytecode of the Example class, and loads it dynamically
 byte[] code = cw.toByteArray();

Java Example
Using ASM

17

t = .test1~new

t~testMethod('aap','noot','mies')
test2 = .object~subclass('test1')
test2~define("testje","say 'thats it!'")
test2~define("unknown","say 'doh'")
s = test2~new
s~testje
s~dilbert
say 'now is the time'~word(3)
exit

::class test1

::method init
say "init of class test1"

::method testMethod
use arg a, b, c

say a
say b
say c

return 0

Example

Duck Typing

... Walks like a duck, talks like a
duck ... must be of type Duck
[inspired by our Ruby friends]

18

Just looks at available methods
As opposed to Java, an object’s type is determined by what it can
do, not by its class

In Java, to successfully call a method, it must belong to the class,
or an implemented interface, of an object

19

The UNKNOWN method
Duck Typing benefits a catch-
all method for messages that
are not understood by the
receiver

ooRexx has this built in

Java will issue you a ‘method
not found’ at compiler time

20

“There's no doubt that you can prototype more
quickly in an environment that lets you get away
with murder at compile time, but I do think the
resulting programs are less robust. I think that to
get the most robust programs, you want to do as
much static type checking as possible.”

Josh Bloch, Author of Effective Java

Static type checking for robustness

21

Static

Murder at compile time

22

Model

Business Domain
Model

System Model

Logical Model
Physical Model
(Deployment)

Requirements Model
(Computation-Independent)

Computation
Model

Platform-Independent Model
(PIM)

Platform-Specific Model
(PSM)

aCreditFacilityArrangement
balance=42

aCounterParty
name="R.V.Jansen"

CreditFacilityArrangement
balance=money

eliminateUnderBalance()

CounterParty
name=String

Class Attribute

Class

Method

Level Issues

Level errors are the reason why optional type checking is preferable

Sometimes static typing outlook is grim
For example, implementing a visitor pattern for all subclasses of a particular class

23

But there is a downside
to static type checking

24

The Visitor Pattern

Used in
compilers, but
also in our
applications
Universal Editor.

Have to adapt the
visitor class every
time a new
subtype is
generated.

That’s fairly
inefficient.

Visitor Pattern

25

The Visitor pattern, when employed in Java (or C++,
for that matter), requires the programmer to repeat
the same method with a signature that matches
every subtype argument.

Visitor

Metaclasses

And Aspect Oriented
programming - the two go
together quite nicely

26

::class metatest public subclass class

 ::method unknown
 use arg msg, args
 if msg = 'TRACE' then
 do
 s = self~methods
 do while s~available
 mname = s~index
 m = s~item
 if m~source <> "" then
 do
 methodText = self~method(mname~string)~source
 methodText[1] = 'trace results;' methodText[1]
 tracedMethod = .method~new(' ', methodText)
 self~define(mname~string, tracedMethod)
 end
 s~next
 end -- do while
 return self~new(args)
 end

27

The idea: have a
metaclass that
inserts TRACE
statements

28

::class metatest public subclass class

 ::method unknown
 use arg msg, args
 if msg = 'TRACE' then
 do
 s = self~methods
 do while s~available
 mname = s~index
 m = s~item
 if m~source <> "" then
 do
 methodText = self~method(mname~string)~source
 i=1;
 do while methodText[i]~string~wordpos('expose') > 0
 i = i + 1
 end
 methodText[i] = 'trace results;' methodText[i]
 tracedMethod = .method~new(' ', methodText)
 self~define(mname~string, tracedMethod)
 end
 s~next
 end -- do while
 return self~new(args)
 end

Add a check,
‘expose’ must be
first keyword in
method if used

It might be an
idea to let go of
this constraint.

29

::requires metatest.rex
::class test public metaclass metatest

 ::method init
 say 'we instigated a new instance of class test'

 ::method add
 x = 40
 y = 2
 say 'x + y =' x+y
 self~multiply

 ::method subtract
 x = 44
 y = 2
 say 'x - y =' x-y
 self~multiply

 ::method multiply
 x = 22
 y = 2
 say 'x * y =' x*y

Class Under Test

30

Results
[liberty:~/rxtrace] rvjansen% rexx testtest.rex
 1 *-* trace results;
 1 *-* say 'we instigated a new instance of class test'
 >>> "we instigated a new instance of class test"
we instigated a new instance of class test
 1 *-* x = 40
 >>> "40"
 2 *-* y = 2
 >>> "2"
 3 *-* say 'x + y =' x+y
 >>> "x + y = 42"
x + y = 42
 4 *-* self~multiply
 1 *-* x = 22
 >>> "22"
 2 *-* y = 2
 >>> "2"
 3 *-* say 'x * y =' x*y
 >>> "x * y = 44"
x * y = 44
 1 *-* x = 44
 >>> "44"
 2 *-* y = 2
 >>> "2"
 3 *-* say 'x - y =' x-y
 >>> "x - y = 42"
x - y = 42
 4 *-* self~multiply
 1 *-* x = 22
 >>> "22"
 2 *-* y = 2
 >>> "2"
 3 *-* say 'x * y =' x*y
 >>> "x * y = 44"
x * y = 44

t = .test~trace()
t~add()
t~subtract()

::requires test.rex

Monkey Patching a Java Object
http://kofno.wordpress.com/2007/02/24/monkey-patch-java-objects-from-jruby/

31

http://kofno.wordpress.com/2007/02/24/monkey-patch-java-objects-from-jruby/
http://kofno.wordpress.com/2007/02/24/monkey-patch-java-objects-from-jruby/

What is a monkey patch?
It is adding a method to an
existing Java object using a
proxy in another language

ooRexx can pull this off using
BSF4Rexx. The proxying
ooRexx class can have
methods dynamically added
and pass them on to the Java
object - a monkey patch.

32

Monke
(That method is only available from the
proxy class)

Closures
Rexx had it before it was called a closure

33

34

Code blocks are a
popular modern idiom
to, for example,
compactly express
actions on a collection

They can be found in
modern languages like
Ruby, Groovy and
Python. Java needs
inner class syntax to
approximate it, and
then still it does not
give the same ease of
use.

#! /opt/ooRexx/bin/rexx

s = .symposium~new

::class symposium
 ::method init
 l = .array~of('chip','gil','lee','mark','mike','rick','rony')
 x = .xeq~new
 x~map(l, "say hello")
 x~map(l, "say goodbye")

::class xeq
 ::method do
 use arg b, c
 interpret c b

 ::method map
 use arg a, v
 do k over a
 self~do(k,v)
 end

35

HELLO CHIP
HELLO GIL
HELLO LEE
HELLO MARK
HELLO MIKE
HELLO RICK
HELLO RONY
GOODBYE CHIP
GOODBYE GIL
GOODBYE LEE
GOODBYE MARK
GOODBYE MIKE
GOODBYE RICK
GOODBYE RONY

s = .symposium~new

Results

Using Parse as LISP

36

37

cdr = “foo bar baz”
loop while cdr <> ‘’
 parse var cdr car ‘ ‘ cdr

 -- do something to car
end

This is what you
would do in Lisp:
loop over a list,
splitting off the
first element of it
and processing
from left to right,
optionally
concatenating
the results
together in
another list

38

For an example,
look at this
‘war and peace’
 (apologies to Leo
Tolstoy) that
capitalizes words
in a string

(a real world
example)

import java.util.regex.*;

/**
 * Static methods to parse out words from a String
 *
 */
public class Words {

 /**
 * Count the number of words in the String
 *
 * @param str a string containing words that match the regular expression \w+
 * separated by \s+
 *
 * @return int the number of words in the string
 */
 public static int countWords(String str) {
 String[] words = getWords(str);Image:WarAndPeace.jpg
 int numWords = words.length;
 return numWords;
 }

 /**
 * Gives a String array containing the parsed out words from the string. The
 * method uses the regular expression \s+ to split the string into words.
 *
 * @param str a string containing words that match the regular expression \w+
 * separated by \s+
 *
 * @return String[] containing the words
 */
 public static String[] getWords(String str) {
 String[] words = java.util.regex.Pattern.compile("\\s+").split(str.trim());
 return words;
 }

Java can be
very ‘wordy’

http://upload.wikimedia.org/wikipedia/en/0/05/WarAndPeace.jpg
http://upload.wikimedia.org/wikipedia/en/0/05/WarAndPeace.jpg

39

 /**
 * Capitalise the first letter of each word in the string. The method uses
 * countWords(String) and getWords(String).
 *
 * @param str a string containing words that match the regular expression \w+
 * separated by \s+
 *
 * @return String containing the original string with the first letter of each
 * word in uppercase.
 */
 public static String capitalise(String str) {
 String capitalised = null;
 int numWords = countWords(str);
 String[] words = getWords(str);
 for (int i = 0; i < numWords; i++) {
 StartingBuffer sb = new StringBuffer(words[i]);
 Character c = sb.charAt(0);
 sb.setCharAt(0, Character.toUpperCase(c));
 words[i] = sb.toString();
 if (capitalised == null) {
 capitalised = words[i];
 } else {
 capitalised = capitalised + " " + words[i];
 }
 }
 return capitalised;
 }

}

It goes actually on
for another page

40

Would be this
in NetRexx

cdr = “foo bar baz”; line = ‘’
loop while cdr <> ‘’
 parse cdr car ‘ ‘ cdr

 line = line car.upper(1,1)
end

Rexx needs
three things
According to us

41

1: IDE Support
[Quick edit/debug cycle]

[Syntax colouring]

[API expansion]

[The youngsters want it]

[Actually, they cannot do without]

42

2: Web
Framework &
ORM layer

[To quickly put together a web
app]

[Think Rexx on Rails]

43

3: Dialect
Unification
[The story is too difficult to sell]

[ooRexx, NetRexx should enjoy a
rapprochement]

[Very happy with recent
enhancements already - like loop]

[ooRexx should also run on Java
VM]

44

Get In Touch

45

rvjansen@xs4all.nl

rene.vincent.jansen@gmail.com

Thank You!

mailto:rvjansen@xs4all.nl
mailto:rvjansen@xs4all.nl
mailto:rene.vincent.jansen@gmail.com
mailto:rene.vincent.jansen@gmail.com

