The API i1s dead...

...long live the API

I A little ooRexx API history

Rexx release in OS/2 1.2

- Ints were 16-bit, longs were 32-bit
- longs were used universally for string lengths
- short ints were used in many places

e Largely a translation of VM/CMS APlIs into C.
* For compatibility, the APl was kept largely
unchanged when migrated to 32-bit OS/2 2.0

I * Originally designed for the 16-bit Classic

History continued

* As designed, this APl was never intended to

be a cross-platform API
- Somehow, it became a de facto standard

* Designed for the “everything in Rexx is a
string” world, it served well for many years.

I Fast forward 18(!) years

limitations on what native-code extensions

can do
- Not everything is easily mapped to string values
- Objects get translated to their “string value”.

* Choices made in 1988 for data types don't
translate well to 64-bit platforms

- Non-portable long ints
- Pointer sizes no longer match int sizes

I * The string-only style places serious

I The 64-bit cleanup effort

recognized
- Originally intended as a follow-on effort after the
64-bit version.
* The 64-bit type compatibility issues forced a

decision

- Implement a 64-bit “clean” version of string
interfaces

- or, skip ahead to the longer-range solution

* We decided to “go for it".

I * Need for new object APIs was long

Some notes about compatibility

* On 32-bit systems, old native libraries will
continue to function
* On 64-bit systems, libraries will need to be

converted to the new APIs

- Either new type-clean versions of the legacy
APls, or
- The new object API set.

Type-clean legacy APIs

e Similar to existing APls
- Library function names have changed
(ooRexxVariablePool vs. RexxVariablePool)
- Function arguments and structure fields

redefined to use abstract types:

typedef struct VariableRequest { /* shvb */
struct _VariableRequest *shvnext; /* pointer to the next block */
RxString shvname; /[* Pointer to the name buffer */
RxString shvvalue; /* Pointer to the value buffer */
RexxStringLength shvnamelen; /* Length of the name value */
RexxStringLength shvvaluelen; /* Length of the fetch value */
RexxNumber shvcode; /* Function code for this block*/
RexxNumber shvret; /* Individual Return Code Flags*/

} VariableRequest;

I Object APIs

- Java JNI
- PHP Zend

* Rather than call RexxStart to run program,

an interpreter instance is created

- Environment persists between calls

— Able to hold references to ooRexx objects
between program calls

- Similar to Java JNI_CreateJavaVM() function

- Additional threads can be attached to an
iInstance

- Exit handlers apply to an interpreter instance

I * Modeled after existing APl styles

I Packages

extension libraries that can declare a set of
registered functions and/or native methods
* | oaded automatically by the ::package

directive
- library must be available and loadable for the
program to run

I * Rexx function packages are self-describing

Table declared routines

ooRexxFunctionEntry rxsock functions|] ={
REXX_TYPED_ FUNCTION(SockDropFuncs , SockDropFuncs

iiEXX_TYPED_FUNCTION(SockVersion . SockVersion
|3

ooRexxPackageEntry rxsock package entry ={
STANDARD PACKAGE_ HEADER

"RXSOCK", // name of the package
"1.3", // package information

rxsock _functions, // the exported functions
NULL // no methods in this package

|

// package loading stub.
OOREXX GET_PACKAGE(rxsock);

I Typed function declarations

functions, you can create functions with type

declarations

- 00Rexx does data-type conversions on both
arguments and return value

- Performs checks for required arguments

- Provides “reasonable” defaults for omitted
optional arguments

- Frequently MUCH easier to implement stub
functions

I * |[n addition to the legacy string-based

I Compare this...

LONG APIENTRY SysFileCopy(

PSZ name, /* Function name */
LONG numargs, /* Number of arguments */
RXSTRING args|], [* Argument array */
PSZ gqueuename, [* Current queue */
PRXSTRING retstr) /* Return RXSTRING */
{
if (numargs != 2) /* we need two arguments ¥/
return INVALID ROUTINE; [* raise an error */
[* copy the file */
if (ICopyFile(args[0].strptr, args[1].strptr, 0))
RETVAL(GetLastError()) [* pass back return code ¥/
else
RETVAL(O)

}

I ...to this

RexxFunction2(int, SysFileCopy, CSTRING, fromFile, CSTRING, toFile)

{
I return CopyFile(fromFile, toFile, 0) ? 0 : GetLastError();
}

Many different types available

*Rexx object

°Int

*Rexx String object
*CSTRING

*Rexx Array

*Rexx Stem
°double

float

evarious int sizes
*boolean

Context...

the difference between roadkill and somebody's
lunch

I APl context pointers

providing access to API functions
- Similar to the Java JNI env pointer

* Multiple context types, which expose different

functions

- Thread context — implements access to object
capabillities

- Function context — provides thread context
functions plus access to function environment

- Method context — thread context functions plus
access to method/object env.

- Exit context — thread context plus exit
environment.

I * Context pointers are pointer vectors

I Thread context
* Available:
I — After creating Rexx interpreter instance
- After attaching a thread to an instance

- Passed to function, method, and exit calls

Thread context functions

Object reference handling

Object method invocation

Data conversion functions

Utility functions for common object
manipulation (Array, Stem, String, Directory,
etc.)

Condition access

Environment access

Method loading/resolution functions

Useful predefined objects (.nil, .true, .false)

Some examples

return context->NewStringFromAsciiz(temp);

context->SetStemArrayElement(stem, count, context-
>NewsString(ibuf, vlen));

return context->NullString();
return context->NumberToObject(ERROR_NOMEM);

char *classStr = context->ObjectToStringValue(classArg);

I Function context

* Thread context functions plus
- Argument access
— Caller context variable access
- Numeric setting access

I * Passed to native function calls

Some Examples

RexxSupplierObject vars = context->GetAllContextVariables();
context->InvalidRoutine();

context->SetContextVariable("RC”, context->NumberToObiject(rc));

I Method context

* Thread context functions plus
- Argument access
- Object variable access
- Self, super access
- Super class message sends
- Guard functions
— Context class resolution

I Passed to all native method calls

I Exit context

* Thread context functions plus

* Passed to all native method calls
I - Context variable access

Questions?

