
The API is dead...

...long live the API

A little ooRexx API history

● Originally designed for the 16-bit Classic
Rexx release in OS/2 1.2
– ints were 16-bit, longs were 32-bit
– longs were used universally for string lengths
– short ints were used in many places

● Largely a translation of VM/CMS APIs into C.
● For compatibility, the API was kept largely

unchanged when migrated to 32-bit OS/2 2.0

History continued

● As designed, this API was never intended to
be a cross-platform API
– Somehow, it became a de facto standard

● Designed for the “everything in Rexx is a
string” world, it served well for many years.

Fast forward 18(!) years

● The string-only style places serious
limitations on what native-code extensions
can do
– Not everything is easily mapped to string values
– Objects get translated to their “string value”.

● Choices made in 1988 for data types don't
translate well to 64-bit platforms
– Non-portable long ints
– Pointer sizes no longer match int sizes

The 64-bit cleanup effort

● Need for new object APIs was long
recognized
– Originally intended as a follow-on effort after the

64-bit version.
● The 64-bit type compatibility issues forced a

decision
– Implement a 64-bit “clean” version of string

interfaces
– or, skip ahead to the longer-range solution

● We decided to “go for it”.

Some notes about compatibility

● On 32-bit systems, old native libraries will
continue to function

● On 64-bit systems, libraries will need to be
converted to the new APIs
– Either new type-clean versions of the legacy

APIs, or
– The new object API set.

Type-clean legacy APIs

● Similar to existing APIs
– Library function names have changed

(ooRexxVariablePool vs. RexxVariablePool)
– Function arguments and structure fields

redefined to use abstract types:
typedef struct _VariableRequest { /* shvb */
 struct _VariableRequest *shvnext; /* pointer to the next block */
 RxString shvname; /* Pointer to the name buffer */
 RxString shvvalue; /* Pointer to the value buffer */
 RexxStringLength shvnamelen; /* Length of the name value */
 RexxStringLength shvvaluelen; /* Length of the fetch value */
 RexxNumber shvcode; /* Function code for this block*/
 RexxNumber shvret; /* Individual Return Code Flags*/
} VariableRequest;

Object APIs

● Modeled after existing API styles
– Java JNI
– PHP Zend

● Rather than call RexxStart to run program,
an interpreter instance is created
– Environment persists between calls
– Able to hold references to ooRexx objects

between program calls
– Similar to Java JNI_CreateJavaVM() function
– Additional threads can be attached to an

instance
– Exit handlers apply to an interpreter instance

Packages

● Rexx function packages are self-describing
extension libraries that can declare a set of
registered functions and/or native methods

● Loaded automatically by the ::package
directive
– library must be available and loadable for the

program to run

Table declared routines
 ooRexxFunctionEntry rxsock_functions[] ={
 REXX_TYPED_FUNCTION(SockDropFuncs , SockDropFuncs)
 ...
 REXX_TYPED_FUNCTION(SockVersion , SockVersion)
};

ooRexxPackageEntry rxsock_package_entry ={
 STANDARD_PACKAGE_HEADER
 "RXSOCK", // name of the package
 "1.3", // package information
 rxsock_functions, // the exported functions
 NULL // no methods in this package
};

// package loading stub.
OOREXX_GET_PACKAGE(rxsock);

Typed function declarations

● In addition to the legacy string-based
functions, you can create functions with type
declarations
– ooRexx does data-type conversions on both

arguments and return value
– Performs checks for required arguments
– Provides “reasonable” defaults for omitted

optional arguments
– Frequently MUCH easier to implement stub

functions

Compare this...
LONG APIENTRY SysFileCopy(
 PSZ name, /* Function name */
 LONG numargs, /* Number of arguments */
 RXSTRING args[], /* Argument array */
 PSZ queuename, /* Current queue */
 PRXSTRING retstr) /* Return RXSTRING */
{

 if (numargs != 2) /* we need two arguments */
 return INVALID_ROUTINE; /* raise an error */

 /* copy the file */
 if (!CopyFile(args[0].strptr, args[1].strptr, 0))
 RETVAL(GetLastError()) /* pass back return code */

 else
 RETVAL(0)
}

...to this
RexxFunction2(int, SysFileCopy, CSTRING, fromFile, CSTRING, toFile)
{
 return CopyFile(fromFile, toFile, 0) ? 0 : GetLastError();
}

Many different types available

●Rexx object
●int
●Rexx String object
●CSTRING
●Rexx Array
●Rexx Stem
●double
●float
●various int sizes
●boolean

Context...

the difference between roadkill and somebody's
lunch

API context pointers

● Context pointers are pointer vectors
providing access to API functions
– Similar to the Java JNI env pointer

● Multiple context types, which expose different
functions
– Thread context – implements access to object

capabilities
– Function context – provides thread context

functions plus access to function environment
– Method context – thread context functions plus

access to method/object env.
– Exit context – thread context plus exit

environment.

Thread context

● Available:
– After creating Rexx interpreter instance
– After attaching a thread to an instance
– Passed to function, method, and exit calls

Thread context functions

● Object reference handling
● Object method invocation
● Data conversion functions
● Utility functions for common object

manipulation (Array, Stem, String, Directory,
etc.)

● Condition access
● Environment access
● Method loading/resolution functions
● Useful predefined objects (.nil, .true, .false)

Some examples

return context->NewStringFromAsciiz(temp);

context->SetStemArrayElement(stem, count, context-
>NewString(ibuf, vlen));

return context->NullString();

return context->NumberToObject(ERROR_NOMEM);

char *classStr = context->ObjectToStringValue(classArg);

Function context

● Passed to native function calls
● Thread context functions plus

– Argument access
– Caller context variable access
– Numeric setting access

Some Examples
RexxSupplierObject vars = context->GetAllContextVariables();

context->InvalidRoutine();

context->SetContextVariable(“RC”, context->NumberToObject(rc));

Method context

● Passed to all native method calls
● Thread context functions plus

– Argument access
– Object variable access
– Self, super access
– Super class message sends
– Guard functions
– Context class resolution

Exit context

● Passed to all native method calls
● Thread context functions plus

– Context variable access

Questions?

