
OpenOffice.org Automation – Andreas Ahammer Page 1

OpenOffice.org Automation:
Object Model, Scripting Languages,
“Nutshell”-Examples

Andreas Ahammer
Vienna University of Economics and Business Administration,
Reg. No. 0251406

E-Mail: h0251406@wu-wien.ac.at

Intial version: June 24, 2005
Actual version: November 06, 2005

Bachelor Course Paper
Department of Business Informatics
Prof. Dr. Rony G. Flatscher
Department Chair "Information Systems and Operations"

OpenOffice.org Automation – Andreas Ahammer Page 2

Contents
1 Introduction...5

1.1 About this paper...5
1.2 Research question.. 5
1.3 Office Applications..5
1.4 Automation.. 6

2 Technical Requirements... 8
2.1 Overall concept..8
2.2 OpenOffice.org.. 9

2.2.1 History...9
2.2.2 Applications.. 9
2.2.3 OpenOffice.org 2.0... 10

2.3 Bean Scripting Framework.. 10
2.3.1 History...10
2.3.2 Architectural Overview ..11
2.3.3 BSF4Rexx...11

2.4 ObjectRexx.. 12
2.4.1 History...12
2.4.2 Features...13
2.4.3 Syntax... 14

2.5 Operating System...16
3 Concepts... 17

3.1 Universal Network Object... 17
3.2 Object Model of OpenOffice.org...18

3.2.1 Service Manager... 18
3.2.2 Component Context.. 19
3.2.3 How to get objects.. 19
3.2.4 Services...20
3.2.5 Interfaces...21
3.2.6 Properties.. 22

4 Installation Guide..23
5 Examples.. 25

5.1 swriter – examples... 25
5.1.1 Example 01 – HelloWorld.. 27
5.1.2 Example 02 – Open an existing swriter-file... 29
5.1.3 Example 03a – Print a page.. 30
5.1.4 Example 03b – Print a locale html – file.. 31
5.1.5 Example 03c – Print a html – file from the internet................................... 32
5.1.6 Example 04 – Statistics 1..32
5.1.7 Example 05 – Statistics 2..34
5.1.8 Example 06 – Text ...34
5.1.9 Example 07 – Text Table..36
5.1.10 Example 08 – Textfield.. 38
5.1.11 Example 09 – Search, Replace and Insert Text.. 39
5.1.12 Example 10 – Convert a swriter document to pdf.................................... 40

5.2 scalc - examples...43
5.2.1 Example 11 – Hello World... 43
5.2.2 Example 12 – Print Area...44
5.2.3 Example 13 – Cell formatting...45
5.2.4 Example 14 – Function Autofill... 46

OpenOffice.org Automation – Andreas Ahammer Page 3

5.2.5 Example 15 – Sort.. 48
5.2.6 Example 16 – Database Function .. 49
5.2.7 Example 17 – Document Style... 50
5.2.8 Example 18 – Charts 1..51
5.2.9 Example 19 – Charts 2..53

5.3 sdraw and simpress – Examples.. 54
5.3.1 Example 20 – Hello World... 54
5.3.2 Example 21 – Group Function..56
5.3.3 Example 22 – Fill Function.. 58
5.3.4 Example 23 – Convert a sdraw document to jpg.. 59
5.3.5 Example 24 – Start a blank presentation.. 60
5.3.6 Example 25 – Make a short presentation..61

5.4 Database...62
5.4.1 Example 26 – Read data from an existing Database...................................63
5.4.2 Example 27 – Handling a MS Access database..64
5.4.3 Example 28 – Handling a MySQL – Database... 65

5.5 Linguistics..68
5.5.1 Example 29 – Dictionary.. 68

6 Conclusion.. 70
7 List of references.. 71
8 Download Links..73
9 Index... 74

OpenOffice.org Automation – Andreas Ahammer Page 4

Figures
Figure 01: overall concept, [Augu05]..8
Figure 02: BSF – architectural overview, [Hane05]..11
Figure 03: BSF4Rexx – architectural overview of the „Wiener version“, [Flat05]........ 12
Figure 04: Service Manger, [Open03]... 18
Figure 05: Service – Text Document, [Open03]... 20
Figure 06: Text Document Model, [Open03]..26
Figure 07: Example 01 – Hello World, Andreas Ahammer.. 29
Figure 08: Example 07 – Text Table, Andreas Ahammer...36
Figure 09: Example 08 – Textfield, Andreas Ahammer..38
Figure 10: Example 10 – pdf FilePicker, Andreas Ahammer..41
Figure 11: Example 11 – Hello World, Andreas Ahammer.. 43
Figure 12: Example 12 – Print Area, Andreas Ahammer..44
Figure 13: Example 13 – Cell formattings, Andreas Ahammer...................................... 46
Figure 14: Example 14 – Function Autofill, Andreas Ahammer.................................... 47
Figure 15: Example 16 – Database Function, Andreas Ahammer.................................. 49
Figure 16: Example 17 – Document Style, Andreas Ahammer.......................................50
Figure 17: Example 18 – Charts 1, Andreas Ahammer...52
Figure 18: Example 19 – Charts 2, Andreas Ahammer...53
Figure 19: Example 20 – Hello World, Andreas Ahammer.. 55
Figure 20: Example 21 – Group Function, Andreas Ahammer.......................................56
Figure 21: Example 22 – Fill Function, Andreas Ahammer..58
Figure 22: Example 25 – Make a short presentation, Andreas Ahammer.......................61
Figure 23: Data Base Administration, Andreas Ahammer.. 63
Figure 24: ODBC – Bridge 1, Andreas Ahammer...64
Figure 25: ODBC – Bridge 2, Andreas Ahammer...64
Figure 26: XAMPP Control Panel, Andreas Ahammer...66
Figure 27: phpMyAdmin, Andreas Ahammer...66
Figure 28: Example 28 – Handling a MySQL – Database, Andreas Ahammer.............. 67
Figure 29: Example 29 – Dictionary, Andreas Ahammer... 69

OpenOffice.org Automation – Andreas Ahammer Page 5

1 Introduction

1.1 About this paper
This paper is about the automation of OpenOffice.org via ObjectRexx. At first you'll get
a short introduction about office applications and automation of office applications. It's
followed by the overall concept, the technical requirements (OpenOffice.org, Java, BSF,
ObjectRexx) and the object model. The next point is a short guidance how to install all
the components so that you can use the presented “nutshells” to develop your own
examples. The main part of this paper is the “Nutshell-Examples” where you can see
how the automation of OpenOffice.org works.

1.2 Research question
How is it possible to automate the applications of OpenOffice.org by ObjectRexx?

1.3 Office Applications
One of the most frequently used software products is the so called “office” applications.
People who work with the computer need such office applications at work and at home
to write articles, memos and letters, make some calculations, create a presentation, draw
a shape, and so on. So a lot of software companies and organizations offer office
applications in a very wide variety.

On the one hand there are the commercial products where you have to buy a license to
use it. The most famous commercial office application is Microsof's „Microsoft Office“
(MS-Office). MS-Office is like all other office applications a typical end-user tool1,
because it's easy to install, easy to use, it contains all necessary categories, all
applications have a similar graphical user interface and it is „quasi standard“2 to share
documents. The disadvantages of MS-Office are, that it is very expensive (you have to
pay for every new version), it only runs under „Microsoft Windows“ and the object
model3 is not really object oriented4.

1 An end-user is a user of an application program. Typically, the term means that the person is not a computer
programmer. It's a person who uses a computer as part of their daily life or daily work, but is not interested in
computers per se. So an end-user tool is an application like an office software that the end-user uses.

2 Quasi standard means, when sharing a document (e.g. a text document, spreadsheet document) many users are
going to take the propriate file – format of this application.

3 An object model is a specification of the objects for a given system, including a description of the object
characteristics and a description of the static and dynamic relationships that exist between objects.

4 Object-oriented programming (OOP) is a programming language model organized around "objects".
Programmers can define a data type, data structure and types of operations that can be applied to the data
structure. So an object includes data and functions.

OpenOffice.org Automation – Andreas Ahammer Page 6

On the other hand there are a lot of open source5 solutions like OpenOffice.org (OOo).
The advantage of the open source components are that they have nearly the same
features like the commercial products, you'll find a lot of information about them on the
internet and, of course, they are free.

1.4 Automation
Automation in our context means to control the office application (OpenOffice.org) via
a scripting language6 (ObjectRexx).

Such a code to automate a program is often called a “macro”.

“Macros support commands that allow a variety of advanced functions, such as
making decisions, looping and even interacting with a person. ... Macros are
especially useful when you have to do a task the same way over and over again,
or when you want to press a single button to do something that normally takes
several steps.“ [Pito04]

So macros should facilitate the „every-day“ work and therefore it is also an economical
factor. If an employee doesn't spend a lot of time to do trivial tasks over and over again,
the company will save money. For example would it be nice if you have to click only
once with the mouse and an inquiry will convert to an order.

OpenOffice.org provides a very large variety for automation:

• Macro Recorder

This is the easiest way to write a macro. It's possible to start the macro recorder
from every OOo application and it stores every click with the mouse and every
key press internal in a scripting language called “OpenOffice.org Basic”. The
advantage of the macro recorder is, that it is very easy to use and so nearly
everyone can write a macro, but it has limited functions.

• OpenOffice.org Basic (OOo Basic)

OOo Basic was developed for OpenOffice.org and is a very flexible macro
language, allowing automation of both simple and complex tasks. [Pito04] The
programmer himself writes line per line of the code and so he needs a lot of
programming knowledge and has to know the Syntax of OOo Basic. Although this
language is easy to use, has a lot of implemented features and is very powerful for
scripting OOo, it has also some disadvantages: it doesn't have many features like
other programming languages (e.g. Java – packages, API,...) and you can't
communicate with other languages.

5 Generically, open source refers to a program in which the source code is available to the general public for use
and/or modification. Open source code is typically created as a collaborative effort in which programmers
improve upon the code and share the changes within the community.

6 A scripting language is a high level programming language that is interpreted by another program at runtime.
Scripts typically interact either with other programs or with a set of functions provided by the interpreter. There
are many scripting languages which can be embedded within HTML to add more functionality to a web page,
such as different menu styles or interative formulars.

OpenOffice.org Automation – Andreas Ahammer Page 7

• Java

OpenOffice.org offers a Java programming interface called “Java UNO“ (cp. 3.1
Universal Network Object). So programmers which can handle Java well are able
to automate OpenOffice.org. Java has some other advantages like a lot of
implemented packages, the Java API and a very large community, but it is never
as easy to learn as scripting languages. It takes time to understand the syntax of
Java and to get a survey of how does Java work.

• ObjectRexx

ObjectRexx is a powerful and easy to learn scripting language and is described in
detail in 2.4 ObjectRexx. By means of BSF4Rexx, ObjectRexx is able to control
any Java class and so you can use ObjectRexx for OpenOffice.org automation.

OpenOffice.org Automation – Andreas Ahammer Page 8

2 Technical Requirements
This chapter introduces the technical requirements you'll need to automate
OpenOffice.org from ObjectRexx.

2.1 Overall concept
The following figure shows the overall concept of the automation:

Figure 01: overall concept, [Augu05]

On the right side of Figure 01 there is a scripting language which is compatible to the
Bean Scripting Framework (BSF). The figure points out Rhino7, because Walter
Augustin describes in his paper [Augu05] some automation examples with this scripting
language. Actually there could be any scripting language that's compatible to BSF.

The next part of the Figure 01 is BSF and could be described as the bridge between a
scripting language and Java. So it's going to convert the code from a scripting language
to a Java-based code. BSF will be described in detail in 2.3 Bean Scripting Framework.

The next part is called „Universal Network Object“ (UNO). UNO, in our case the Java
UNO, provides a bridge between OpenOffice.org and a programming language (e.g.
Java) to have access to all OpenOffice.org objects. Java UNO will be described in detail
in chapter 3.1 Universal Network Object.

On the left side there is OpenOffice.org with all its components. It is very important to
be familar with the object model, i.e. how to get objects from OpenOffice.org and how
to deal with them. The object model will be described in detail in chapter 3.2 Object
Model of OpenOffice.org.

7 Rhino is an open-source implementation of JavaScript written entirely in Java. It is typically embedded into Java
applications to provide scripting to end users. It can be downloaded at http://www.mozilla.org/rhino/.

Open Office

Rhino

UNO BSF ORexx

...

Java
UNO

Objekt

Resultat:
Fernsteuerung
von OO

Programm in
Skriptsprache

Java

OpenOffice.org Automation – Andreas Ahammer Page 9

2.2 OpenOffice.org
OpenOffice.org is an advanced and open source version of Sun's8 StarOffice9 and offers
a lot of different office applications.

2.2.1 History

In 1984 a company called „Star Division“ was founded by Marco Börries. The main
product was an office suite called „Star Office“. In 1999 Star Division was taken over
by „Sun Microsystems“ and Sun made the software available to be downloaded for free.
Sun has developed a new version of Star Office named „OpenOffice“. On July 19th,
2000 OpenOffice.org was released by Sun and on October 13th, 2000 the
OpenOffice.org website was going online. So OpenOffice.org was born and now
everyone can download the product and the sourcecode for free.
[at-mix05]

Since then over 16 million people downloaded OpenOffice.org and a large community
was formed.
[Open05]

The program has been developed continously and the latest released version (November
2005) to download is OpenOffice.org 2.0
(http://de.openoffice.org/downloads/quick.html).

2.2.2 Applications

The following applications are provided by OpenOffice.org 1.1.4:

• swriter10

swriter is a tool to create professional documents, memos, newsletters, webpages
and booklets. It offers a great variety of formatting text, insert graphics, tables,
diagrams and different styles.

• scalc

With this application it's possible to create spreadsheets to calculate, analyse and
present data fast and efficient (e.g. with diagrams).

• sdraw

You can use sdraw to make drawings and shapes in different ways.

8 Sun is the short name for „Sun Microsystems“, a software company and, beside other very remarkable products,
the developer of Java. For further informations look at http://www.sun.com/

9 Star Office was a commercial office application of „Star Division“ and the forerunner of OpenOffice.org
10 The „s“ in swriter comes from the „Star“ of StarOffice (the forerunner of OpenOffice). You'll find this „s“ in

ervery OpenOffice.org document: swriter, scalc, sdraw and simpress

OpenOffice.org Automation – Andreas Ahammer Page 10

• simpress

simpress is based on sdraw, but you can also make nice presentations.

• database module

Beside the classical components OpenOffice.org has a database module where all
kinds of databases can be created. It's also possible to set up a connection to other
databases via ODBC11 or JDBC12.

2.2.3 OpenOffice.org 2.0

At the moment (November 2005), OpenOffice.org 2.0 is already released. All examples
were still developed with OpenOffice.org 1.1.4 and tested with OpenOffice.org 1.1.4
and OpenOffice.org 2.0 beta. If there are any differences between the two versions it
will be pointed out directly at the example.

2.3 Bean Scripting Framework
The Bean Scripting Framework (BSF) is an open source project from IBM and is
defined as followed:

„The Bean Scripting Framework is a set of Java classes that enables the use of
scripting languages, such as Javascript and Tcl, within Java applications and
that permits the use of Java objects and functions within supported scripting
languages.“ [Apac02]

The main functions of BSF are:

• embedding script code into a Java - based program environment
• use of Java components in scripting languages

[Hane05]

2.3.1 History

BSF was developed in 1999 by IBM. The initial intend was to provide access to
JavaBeans from scripting languages environment. The significant development was
done by Matt Dufler and Sam Ruby and BSF was incorporated into Websphere (an IBM
product) and Xalan (an Apache project). Today BSF is a part of the Apache Software
Foundation from IBM.
[IBM05]

11 Open Database Connectivity, in short ODBC, is a standard database access method developed by the SQL access
group. The goal of ODBC is to make it possible to access any data of the datebase from any application.

12 Java Database Connectivity, in short JDBC, is the Java version of ODBC. It's an Java API that provides Database
Management System connectivity to a wide range of SQL databases.

OpenOffice.org Automation – Andreas Ahammer Page 11

2.3.2 Architectural Overview

Figure 02: BSF – architectural overview, [Hane05]

As the figure above shows, the primary components of BSF are the BSFManager and
the BSFEngine.

„The BSFManager handles all scripting execution engines running under its
control, and maintains the object registry that permits scripts access to Java
objects.“ [Apac02]

„The BSFEngine provides an interface that must be implemented for a language
to be used by BSF. This interface provides an abstraction of the scripting
language's capabilities that permits generic handling of script execution and
object registration within the execution context of the scripting language
engine.“ [Apac02]

2.3.3 BSF4Rexx

As the name already assumes, BSF4Rexx is the Bean Scripting Framework for
ObjectRexx. BSF4Rexx was developed in 2000 by Prof. Flatscher and his student Peter
Kalender at the university of Essen. In the „Essener version“ it was possible for Java
based programs to call a Rexx based program. That means Java developer could use
ObjectRexx as scripting language.

In 2003 an advanced version of BSF4Rexx released and was called „Augsburger
version“. Now it was possible to handle Java classes from ObjectRexx. Every Java class
can be used from ObjectRexx, so that the Java API is like a huge library for
ObjectRexx.

BSF
Manager

Java Application

Script
Code

Script
Code

Script
Code

None
Script
Code

Script Engines

Bytecode

OpenOffice.org Automation – Andreas Ahammer Page 12

The newest version of BSF4Rexx is the „Wiener version“ and there is an ongoing
development. The key feature of the current version is, that no strict typing is required
and a lot of new functions for OpenOffice.org automation were created.
[Flat05]

The newest version of BSF4Rexx can be downloaded at
http://wi.wu-wien.ac.at/rgf/rexx/BSF4Rexx/ .

The following figure shows the BSF4Rexx architecture of the „Wiener version“:

Figure 03: BSF4Rexx – architectural overview of the „Wiener version“, [Flat05]

Because OpenOffice.org provides a Java interface (the JavaUNO) and ObjectRexx can
be interpreted to Java via BSF4Rexx, ObjectRexx can be used for OpenOffice.org
automation.

2.4 ObjectRexx
With the words of the developer Mike F. Cowlishaw is Rexx „a procedural language
that allows programs and algorithms to be written in a clear and structured way."
[Mart05]

2.4.1 History

Restructured Extended Executor (Rexx) is a follower of the scripting language EXEC
and was developed in 1979 by Mike F. Cowlishaw, an employee and now a Fellow13 of
IBM. Since 1987 Rexx was available for all IBM platforms and later more ore less for
all operating systems.

13 An IBM – Fellow is an appointed position at IBM. It is considered to be the highest honor a technologist at IBM
can achieve.

OpenOffice.org Automation – Andreas Ahammer Page 13

In the early 1990s the IBM user-association initiated the development of an object
oriented version of Rexx called ObjectRexx. ObjectRexx is completely compatible to
Rexx but has object oriented features and a powerful object model.

In 1996 a new version of Rexx, NetRexx was designed. NetRexx looks like Rexx and
has essentially the same syntax, but internally it generates a Java code.
[Flat05]

The newest version of Rexx is OpenObjectRexx and is a open source project by the
RexxLA14, providing a free implementation of ObjectRexx (http://www.oorexx.com/).

2.4.2 Features

The main goal of the developer was to create a powerful, full-featured programming
language which has an human-oriented syntax and is easy to learn and easy to use.

The following aspects are the key features of Rexx:

• an english-like language

To make Rexx easy to learn and easy to use many instructions are meaningful
english words like SAY, IF ... THEN, DO ... END, DO ... WHILE,
EXIT,...

• fewer rules

Rexx has no strict rules about formatting the source code. One single command
can span many lines and also in one line there can be several commands.
Instructions are not case-sensitive, i.e. you can type them in upper-case, lower-
case or mixed-case. When a Rexx-program is running, internally all characters are
convert to upper-case (excepting special characters, numbers and strings under
apostrophe). Instructions can be finished with a semicolon, but it is not necessary.

• interpreted, not compiled

Rexx is an interpreted language. When a Rexx program executes, the language
processor reads each statement from the source file and runs it.

• built-in functions and methods

There are many built-in functions and methods that perform various processing,
searching and operating functions for text and numbers. Available functions are
described in [Flat05] and [Muel01].

• typeless variables

The next wide difference to other programming languages like Java is, that Rexx
has no strict type definition. Variables can hold any type of object, so you don't

14 The Rexx Language Association (RexxLA, http://www.rexxla.org/) is an independent, non-profit organization
dedicated to promoting the use and understanding of the Rexx programming language.

OpenOffice.org Automation – Andreas Ahammer Page 14

need to declare variables as strings or numbers. Rexx knows internally which
datatype the variables are.

• clear error messages and powerful debugging

Rexx displays messages with full and meaningful explanations when an error
occurs.

[Chay05]

2.4.3 Syntax

Because all examples in this paper are written in ObjectRexx, here is a short
introduction about the syntax of ObjectRexx. Note that this introduction is only made to
make you capable to read and understand my examples. If you want to design your own
nutshells study [Flat05] or [Muel01].

• comments

There are 2 options to write a comment:

 /* comment */ (this comment can span several lines)
 -- comment (this comment can span just one line)

• print something in the command line

SAY "Hello World"
SAY "Hello " || "World" (combine 2 strings)

• variables

There is no strict typing in ObjectRexx:

s = "Hello"
i = 12

• block

A block starts with DO and ends with END:

DO
 instructions
END

• flow - control

IF i < 2 THEN DO
 instructions
END

OpenOffice.org Automation – Andreas Ahammer Page 15

There are many options to realize a loop:

i = 3
DO WHILE i < 3
 instructions
 i = i + 1
END

• procedures

There are some different possibilities to realize a procedure. In the examples
below always a routine is used for a procedure.

::routine name (the name of the routine)
 use arg x, y (the variables the routine needs)
 instructions
 return z (if the routine should return something)

The call of this routine looks like this:

call name 2, 3

• requires - directive

A requirement declares another Rexx program. It is the first directive which is
called when a Rexx program is executed and so all public routines15 of the other
Rexx program are available. In the examples below there is always one
requirement:

::requires UNO.cls (to get OOo support)

• interaction with objects

Interaction with objects exclusively works with messages which are sent to the
object. E.g. if you want to get the method „method1“ from the object „object1“:

object1~method1 (returns what the method1 returns)

The ~ („Twiddle“) is like the . in Java and returns what the method returns. To get
as return statement the object itself you need ~~

object1~~method1 (returns object1)

• arrays

When automating OpenOffice.org a lot of arrays are used. An easy array could be
created like this:

tmpColl = .array~new (create a new array)

15 When a routine is public, the routine can be called by another object with a message to the current object.

OpenOffice.org Automation – Andreas Ahammer Page 16

tmpColl[1] = "a" (insert „a“ to the first position – ObjectRexx
 starts with 1)

tmpColl~put("b", 2) (another way to insert a variable)

• predefined functions

ObjectRexx provides a lot of predefined functions like a „break“ where the
program stops for x seconds:

call syssleep 2 (the program will stop for 2 seconds)

2.5 Operating System
As already mentioned above, OpenOffice.org, Java, BSF4Rexx and ObjectRexx are
platform independent. So you can almost choose every operating system you want.

OpenOffice.org is available for Windows, Linux x86, Mac OSX (X11), PrOOo-Box,
FreeBSD, Linux PowerPC, Linux Sparc, Solaris sparc and Solaris x86.
[Open05]

The standard edition of Java is available for Windows, Linux, Solaris sparc and Solaris
x86.
[Sun05]

Object Rexx runs on every imaginable platform including Windows, Unix, Linux, BSD,
Mac OS, IBM iSeries, OS/2, DOS and the major handheld operating systems.
[RexxLA05]

OpenOffice.org Automation – Andreas Ahammer Page 17

3 Concepts

3.1 Universal Network Object

„UNO (pronounced ['ju:nou]) stands for Universal Network Objects and is the
base component technology for OpenOffice.org. You can utilize and write
components that interact across languages, component technologies, computer
platforms, and networks. Currently, UNO is available on Linux, Solaris, and
Windows for Java, C++ and OpenOffice.org Basic. As well, UNO is available
through the component technology Microsoft COM for many other languages.
UNO is used to access OpenOffice.org, using its Application Programming
Interface (API). The OpenOffice.org API is the comprehensive specification that
describes the programmable features of OpenOffice.org.“ [Open03]

That means UNO provides a powerful bridge between OpenOffice.org and
programming languages.

The main Features of UNO are:

• different languages

UNO can be implemented and accessed from any programming language where a
UNO language binding exists. E.g. Walter Augustin made examples for Java,
ObjectRexx, Rhino, VisualBasic, PHP, and OLE16. [Augu05]

• different operating systems

OpenOffice.org can be downloaded for Windows, Linux and Solaris. So if the
automation is done with a platform independent programming language you are
not bound to a special operating system.

• different networks

UNO is a client/server system. I.e. that a connection via TCP/IP17 from a client to
a server has to be initiated. The advantage is, that the client and the server could
be on one computer, but it is also possible that the client is on the other side of the
world than the server.

[Open03]

This 3 features make OpenOffice.org very flexible to automate without boundaries.

The special bridge that links Java to UNO is called JavaUNO.

16 OLE (Object Linking and Embedding) is Microsoft's framework for a compound document technology.
17 TCP/IP (Transmission Control Protocol / Internet Protocol) is a communication protocol for connecting

computers through the internet.

OpenOffice.org Automation – Andreas Ahammer Page 18

3.2 Object Model of OpenOffice.org
One of the main question for OpenOffice.org automation is how to get objects and how
to work with them.

The following figure shows which components are available to manage the object
model:

Figure 04: Service Manger, [Open03]

3.2.1 Service Manager

„UNO introduces the concept of service managers, which can be considered as
factories that create services.“ [Open03]

The service manager in Figure04 is displayed as a factory, because it provides other
services. So the service manager is the root component of all other objects and it has to
be initiated in every OpenOffice.org automation. That's why it's also called the main
factory.

For example, most of the examples below needs the com.sun.star.frame.Desktop
service. The Desktop is used to load documents, to get the current document and to
access all loaded documents.

Another service provided by the service manager is the
com.sun.star.sdb.Databasecontext, which holds databases registered with
OpenOffice.org.

Client Component Context
(e.g. swriter)

Service Manager

Service

Service

Service

Service
UNO – object
- is called „service“
- provides more interfaces
- has properties

Server Component Context

Service Manager

Service

OpenOffice.org Automation – Andreas Ahammer Page 19

The service manager initiates services by their name, to specify all implementations of a
certain service and to add or remove factories for a certain service at runtime.

The main interface (for interfaces see 3.2.5 Interfaces) of the service manager is the
com.sun.star.lang.XMultiComponentFactory, which offers beside other methods
the method createInstanceWithContext(). It returns a default constructed service
instance which supports at least all interfaces which were specified for the requested
service name.

When you are looking to older examples like [Augu05] you will see, that instead of
com.sun.star.lang.XMultiComponentFactory the author uses the instance
com.sun.star.lang.XMultiServiceFactory. XMultiComponentFactory is newer
and should be used, but you can also still work with the XMultiServiceFactory.

Each component (swriter, scalc,...) has also it's own service manager to create contents
within the component.
[Open03]

3.2.2 Component Context

„A service always exists in a component context, which consists of the service
manager that created the service and other data to be used by the service“
[Open03]

A component context could be an application of OpenOffice.org, e.g. swriter, scalc, and
so on.

Often a component needs more functionality or information after the application is
deployed. Therefore every component context has it's own service manager. If a table
should be inserted to a swriter document, you need the XmultiServiceFactory within
the component context.
[Open03]

3.2.3 How to get objects

„An object in our context is an instance of an implemented class that has
methods you can call.“ [Open03]

There are different objects available in OpenOffice.org:

• new objects

New objects are created by the service manager. For example the instruction
xMultiComponentFactory~-
 createInstanceWithContext("com.sun.star.drawing.ShapeCollection", xContext)

returns a new Desktop interface.

OpenOffice.org Automation – Andreas Ahammer Page 20

• document objects

Document objects are the files that are opened with OpenOffice.org and are
created with the loadComponentFromURL() method of the Desktop object.

• objects that are provided by other objects

If an object is an integral part of another object, the parent object has often a get –
method to get the object. For example the xText object is a part of the
xTextDocument and so the xTextDocument provides a getText() method to get
a xText object.

xText = xTextDocument~getText

Other features, called properties, which are not considered integral for the
architecture of an object are accessible through a set of methods. For properties
look at 3.2.6 Properties.

[Open03]

3.2.4 Services

As aforesaid, all objects in the OpenOffice.org API are called services. But objects and
services are usually not the same thing, because all UNO objects have to follow a
service specification and have to support at least one service.

„Services describe objects by combining interfaces and properties into an
abstract object specification.“ [Open03]

Figure 05: Service – Text Document, [Open03]

OpenOffice.org Automation – Andreas Ahammer Page 21

The figure above shows a cut-out of the service com.sun.star.text.TextDocument in
UML notation.

On the left side of Figure5 you can see, that the com.sun.star.text.TextDocument
must include the service com.sun.star.document.OfficeDocument by definition.

On the right side there are all interfaces the service must support. The TextDocument
has to support the XTextDocument, the XSearchable and the XRefreshable interface.
Because it is also an OfficeDocument, it supports the interfaces XPrintable,
XStoreable, XModel and XModifiable (which is not shown in Figure5) too.

The properties of the interface XTextDocument (CharacterCount, ParagraphCount,
WordCount and XPropertySet) are not shown in Figure5. If you want an overview of
all interfaces and properties of XtextDocument, visit the OpenOffice.org API:
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XTextDocument.html.
[Open03]

3.2.5 Interfaces

„An interface is a set of methods that together define one single aspect of a
service.“ [Open03]

For example according to Figure5, the interface com.sun.star.view.XPrintable
prescribes the methods print(), getPrinter() and setPrinter().

An interface to use is not simple. When you are working with Java, the normal way is to
cast an object before you can call a method from it. But UNO objects are quite different.
When you want to access the methods of an interface, you must ask the UNO
environment to get the appropriate reference. However, the compiler doesn't yet know
about it. So the Java UNO environment has a queryInterface() method to cast all
UNO types safe across process boundaries.
[Open03]

Because BSF4Rexx integrates the ObjectRexx code into a Java environment, these
circumstances affects the ObjectRexx code.

If we want the XSpradsheetDocument interface from the XCalcComponent, the Java
code may look like this:

XSpreadsheetDocument xSpreadsheetDocument = (XspreadsheetDocument)
UnoRuntime.queryInterface(XSpreadsheetDocument.class,
xCalcComponent);

The appropriate ObjectRexx code is:

xSpreadsheetDocumentName = .BSF4Rexx~Class.class~forName -
("com.sun.star.sheet.XSpreadsheetDocument")

xSpreadsheetDocument = unoRuntime~queryInterface -
(xSpreadsheetDocumentName, xCalcComponent)

Note that the „-“ is because of the line break!

OpenOffice.org Automation – Andreas Ahammer Page 22

With thanks to Prof. Flatscher, who is still developing BSF4Rexx, the ObjectRexx code
now looks like this:

xSpreadsheetDocument = xCalcComponent~XSpreadsheetDocument

This makes the code easier to write and easier to read.

3.2.6 Properties

„A property is a feature of a service which is not considered an integral or
structural part of the service and therefore is handled through generic
getPropertyValue() / setPropertyValue() methods instead of specialised
get methods... .“ [Open03]

An interface that supports the com.sun.star.beans.XPropertySet interface can
handle properties and so many features can be set through a single call which improves
the remote performance.

The next instruction shows how to set the color of an XTextCursor with the method
setPropertyValue().

xTextCursorProps = xTextCursor~XPropertySet
xTextCursorProps~setPropertyValue("CharColor", -

box("int", "ff 00 ff"x ~c2d))

The properties of a print job can be set with an array of name/value variables.

printOpts = .bsf~createArray(.OOo~propertyValue, 1)
printOpts[1] = .bsf~new("com.sun.star.beans.PropertyValue")
printOpts[1]~bsf.setFieldValue("Name", "Pages")
printOpts[1]~bsf.setFieldValue("Value", "1")

OpenOffice.org Automation – Andreas Ahammer Page 23

4 Installation Guide
Because you have many software components to install and to configure for using the
examples below, here is a short installation guide.

1. OpenOffice.org

Download the newest version (at the moment in November 2005 OpenOffice.org 2.0)
of OpenOffice.org from http://www.openoffice.org/ and install it on your computer.
Then agree the license regulations and all the components of OpenOffice.org are
ready to use.

The next step is to make OpenOffice.org listen. Only when it is in listen-mode the
connection from the programming language to OpenOffice.org is possible and so you
can get all necessary UNO Objects. Regarding to [Open03] there are two options to
set OpenOffice.org listen:

1. An alternative is to launch the office in listening mode using command - line

options. To do this, start it from the command - line:

<OfficePath>/program/soffice "-accept=socket,port=8100;urp;"

When you use this command - line option, the office will only listen during the
current session.

2. If you want to make OpenOffice.org always listen when the computer is turned on,
edit the file “Setup.xcu”
(<OfficePath>/share/registry/data/org/openoffice) and add following
code in the “Office” - node (i.e. after the line: <node oor:name="Office">):

<prop oor:name="ooSetupConnectionURL" oor:type="xs:string">
 <value>socket,host=localhost,port=8100;urp;</value>
</prop>

Don't forget to set your firewall and don't block port 8100 if you want to connect
from an other computer.

Now you have to set classpathes18 to the required *.jar – files19 of OpenOffice.org.
The classpathes should be set to:

<OfficePath>/program/classes/ridl.jar
<OfficePath>/program/classes/juh.jar
<OfficePath>/program/classes/unoil.jar
<OfficePath>/program/classes/jurt.jar
<OfficePath>/program/classes/sandbox.jar

18 Classpath is a list of places where the operating system can find files that are required (e.g. Java classes)
19 JAR is short for „Java Archive“ which is a file format used to bundle all components required by a Java program.

OpenOffice.org Automation – Andreas Ahammer Page 24

2. Java

The latest version of Java (at the moment in November 2005 Java 5.0) can be
downloaded at http://java.sun.com/. Install the software and set a classpath to the bin-
folder of your Java installation (<JavaPath>/bin/).

If an example stops with an critical exception about the Java Virtual Machine (jvm),
set a path to <JavaPath>/jre/bin/client.

3. ObjectRexx

Since ObjectRexx was going open source the free version of ObjectRexx, called
OpenObjectRexx, is available to download at http://www.oorexx.org/. All
classpathes should be automatically set. If that's not the case, here are the classpathes
which are required:

<ObjectRexxPath>
<ObjectRexxPath>OODIALOG

4. BSF4Rexx and UNO.cls

There are many versions of BSF4rexx so you must be careful that you download the
right one. The latest version you can get at
http://wi.wu-wien.ac.at/rgf/rexx/bsf4rexx/. Download the files and extract it to a
folder.

Study the readmeBSF4Rexx.txt and the readmeOOo.txt to install both correctly.

Now you are ready to test the examples.

OpenOffice.org Automation – Andreas Ahammer Page 25

5 Examples
The „nutshell“ examples below demonstrate the OpenOffice.org automation. They show
a lot of possibilities and should be understood as approach to create more programs with
a higher complexity. It would be nice, if an employee has to click only once with the
mouse button and OpenOffice.org provides a presentation of the available data that
come from a server anywhere in the internet.

Some of the examples are taken from [Open03] and [Pito04] and were modified to the
software environment. In this two books are a lot of examples which you can download
at http://www.openoffice.org/dev_docs/source/sdk/ and
http://www.pitonyak.org/oo.php.

If you want to test my examples you can still type them, use copy and paste or download
them here: http://www.wu-wien.ac.at/usr/h02c/h0251406/e-commerce/vk6/.

The examples are divided into the 5 categories. The first 3 categories represent one of
the main application of OpenOffice.org: swriter, scalc and sdraw and simpress. The 4th

category is something about database functions and the last section presents a dictionary
included in OpenOffice.org.

All the examples were developed on a WindowsXP computer with OpenOffice.org
1.1.4 and were also tested with OpenOffice.org 2.0 beta (more exactly with
OpenOffice.org 1.9.79). If there are any differences or bugs you'll find it at the relevant
example.

5.1 swriter – examples
Swriter offers a huge variety of functions to handle text. Such features are formatting the
text, insert tables, text fields, bookmarks and footnotes, search and replace text, print
pages, word counting, define styles, and so on. Other, maybe more interesting functions,
are to insert text from another document, load a document from an URL20 or export files
directly to pdf21.

Before we go to the classical „Hello World“ example some words about the
TextDocumentModel of swriter:

20 An Uniform Ressource Locator (URL) is an universal address for resources on the internet.
21 A Portable Document Format (pdf) is a file format to transfer (text) files over the internet.

OpenOffice.org Automation – Andreas Ahammer Page 26

Figure 06: Text Document Model, [Open03]

OpenOffice.org Automation – Andreas Ahammer Page 27

The 5 major architectural areas are:

• text

The text is the main part of every text document and is provided by the text
document model. The text is responsible for the style of the text, organizes the
paragraphs and knows about the text content.

• draw page

The draw page is a transparent layer that lies above the text. So it's possible to
draw shapes and to wrap the objects to the text.

• service manager

The service manager makes text contents like text tables, text fields, drawing
shapes,.... available. Remember that this service manager is not equal to the
service manager which creates the initial connection to OpenOffice.org (cp. 3.2.1
Service Manager). Each document model has its own service manager.

• text content suppliers

They offer some features for the text objects.

• objects for styling and numbering

These services are responsible for the document wide styling and structuring of
the text.

Beside these architectural areas there are also overall document aspects of the text
document model because it's an office component (cp. 3.2.4 Services). So a text
document model provides also the interfaces XPrintable, XStoreable, XReplaceable,
XRefreshable, XModifiable and xDocumentInfoSupplier.

The text document model also prepares access to the graphical user interface and has
knowledge about the current view status.
[Open03]

5.1.1 Example 01 – HelloWorld

The first example is the classical „Hello World“22. It shows how to write a simple text in
an empty swriter – document.

The first step of the ObjectRexx program is to import the required UNO.cls. Every
example need this class because it offers a function to connect easy to OpenOffice.org,
creates the XMultiComponentFactory, connects to BSF.cls to get the hole BSF4Rexx
support, imports all OpenOffice.org interfaces and has some other useful features, e.g. it

22 „Hello World“ is the name for the simplest possible code in a programming language to print out the string
„Hello World“

OpenOffice.org Automation – Andreas Ahammer Page 28

makes the handling of arrays and the insertig of text to scalc – cells easy. Object Rexx
always executes all requires directives before the other sourcecode is executed.

So after importing UNO.cls the Desktop interface and the XComponentLoader has to be
created. If there are no parameters passed to createDesktop() the default context will
be used. In later examples we sometimes need a special context.

oDesktop = UNO.createDesktop()
xComponentLoader = oDesktop~XDesktop~XComponentLoader

The com.sun.star.frame.Desktop service is the main service for all OpenOffice.org
applications. All applications in OpenOffice.org are organized in a hierarchy of frames
and the desktop is the root frame for this hierarchy. The interface for the Desktop is the
com.sun.star.frame.XDesktop and it's provided by the Desktop.

To load a component we need the com.sun.star.frame.XComponentLoader interface
which we get from the XDesktop. The XComponentLoader offers one single method
loadComponentFromURL() to load components and this method needs 4 parameters:

• URL

The URL describes which resource should be loaded. It could be a file: URL, a
http: URL, a ftp: URL or a private: URL. As you can see, it could be an
existing file on your local machine, an existing file anywhere accessible through
the network or a new file.

The URLs for creating new documents are:
• "private:factory/swriter" for an empty swriter component
• "private:factory/scalc" for an empty scalc component
• "private:factory/sdraw" for an empty sdraw component
• "private:factory/simpress" for an empty simpress component

• Target Frame Name

The target frame name is a reserved name which denotes the frequently used
frames in the frame hierarchy. The names are _blank for a new frame, _self for
the frame itself, _top for the top frame and so on.

• Search Flag

The search flag specifies where the frame should be searched.

• Property Values

The property values indicate how to load the component (e.g. if the component
should be loaded „hidden“). You can also load the component without properties.
On calling .UNO~noProps we get an empty array without any property values.

Now we get the XTextDocument interface from the XComponent. To get the XText
interface the XTextDocument provides a method called getText(). When calling the
method setString("string") from the interface XText we can insert a simple string
to an empty swriter document.

OpenOffice.org Automation – Andreas Ahammer Page 29

Figure 07: Example 01 – Hello World, Andreas Ahammer

-- Example 01
-- open an empty swriter-file and write "Hello World!"
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the OOo Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* create the TextObject */
xWriterDocument = xWriterComponent~XTextDocument
xText = xWriterDocument~getText()
/* insert text and edit it */
xText~setString("Hello World!")
::requires UNO.cls -- get UNO support

5.1.2 Example 02 – Open an existing swriter-file

The second example is very similar to the first one, but it's loading an existing
document. The file we want to open is stored in the same directory like the *.rex – file
and is named textdocument01.sxw (the extension sxw indicates that the file is an
swriter document from OpenOffice.org). So the URL for the method
loadComponentFromURL() has to be established. The routine makeUrl supplies the
current directory operating system independent.

::routine makeUrl
 return ConvertToURL(stream(arg(1), "c", "query exists"))

OpenOffice.org Automation – Andreas Ahammer Page 30

So the correct URL to the file can be received easily.

url = makeUrl("textdocument01.sxw")

The text document should be loaded „readonly“ (no one can do modifications).
Therefore we have to define the properties to load which exists (like many other
properties) of a pair of name / value variables.

To create such properties we have to make an array of PropertyValues and insert
variables called name and value. BSF4Rexx provides a method to create the arrays:

props = bsf.createArray(.UNO~PropertyValue, 1)

So the variable props is defined as a property value array (with the array length 1). Now
we can create an instance of PropertyValue, save it in an array, define the elements
and insert the variables:

props[1] = .UNO~PropertyValue~new
props[1]~Name = "ReadOnly"
props[1]~Value = box("boolean", .true)

The name of the property value is „ReadOnly“ and the value should be „true“. The
box() method is a type wrapper class to box primitive datatypes into their Java classes
counterparts.

-- Example 02
-- open an existing swriter-file "readonly"
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the *.sxw - file */
url = makeUrl("textdocument01.sxw") -- get the document from the current folder
props = bsf.createArray(.UNO~PropertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "ReadOnly"
props[1]~Value = box("boolean", .true)
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
::requires UNO.cls -- get UNO support
-- A function for getting the file in the current folder
::routine makeUrl -- operating system independent
 return ConvertToURL(stream(arg(1), "c", "query exists"))

5.1.3 Example 03a – Print a page

Example 03a opens an existing swrtier – file and print it. To print a file we need the
XPrintable interface which every XComponent must provide, because an XComponent
is an OfficeDocument.

OpenOffice.org Automation – Andreas Ahammer Page 31

With this interface it's possible to set the printer with the method setPrinter() (if you
don't set a printer OpenOffice.org will use your default printer) and to print the
document with the method print().

With the setPrinter() method you can set property values like the name of the
printer, the paper format, the paper size,...

The print() method needs some property values where you can specify the number of
copies to print, the pages to print, the name of a file to print,...

-- Example 03a
-- a simple print example
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the swriter - file */
url = makeUrl("HelloWorld.sxw") -- get the document from the current folder
props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~propertyValue~new
props[1]~Name = "Hidden"
props[1]~Value = box("boolean", .true)
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
/* set the printer */
xPrintable = xWriterComponent~XPrintable
props[1]~Name = "Name"
props[1]~Value = "hp deskjet 5600 series" -- the name of your printer
xPrintable~setPrinter(props)
/* set the print-options */
props[1]~Name = "Pages"
props[1]~Value = "1"
/* print current file */
xPrintable~print(props)
::requires UNO.cls -- get UNO support
-- A function for getting the file in the current folder

::routine makeUrl -- operating system independent
 return ConvertToURL(stream(arg(1), "c", "query exists"))

5.1.4 Example 03b – Print a locale html – file

This example is very similar to „Example 03a“, but here we are going to print a html –
file.

-- Example 03b
-- a simple print example
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
-- load the HTML file and get its printing interface

OpenOffice.org Automation – Andreas Ahammer Page 32

url = makeUrl("aha.html")
xPrintable = xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps) -
 ~xPrintable
xPrintable~print(.UNO~noProps) -- print the HTML file to default printer
::requires UNO.cls -- get UNO support
-- a routine for getting the file in the current folder/directory
::routine makeUrl
 return ConvertToURL(stream(arg(1), "c", "query exists"))

5.1.5 Example 03c – Print a html – file from the internet

This printer – example shows you how to print a page from the internet. Here the first
page from http://www.RexxLA.org will be printed.

-- Example 03c
-- a simple print example
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
-- load the document, get printing interface of it
url = "http://www.RexxLA.org" -- now use a URL from the WWW
xPrintable = xComponentLoader~loadComponentFromURL(url, "_blank", 0, .UNO~noProps) -
 ~xPrintable
/* set a specific printer to print to */
props = bsf.createArray(.UNO~PropertyValue, 1)
props[1] = .UNO~propertyValue~new
props[1]~Name = "Name"
-- the name of your printer (if not found default one is used)
props[1]~Value = "hp deskjet 5600 series"
xPrintable~setPrinter(props) -- set the printer
/* set the print-options */
props[1]~Name = "Pages"
props[1]~Value = "1" -- just print the first page
xPrintable~print(props) -- now print the page
::requires UNO.cls -- get UNO support

5.1.6 Example 04 – Statistics 1

This example counts the paragraphs, sentences and words of an existing swriter file. At
first, the file is opened hidden from the internet. As you can see the URL of the method
laodComponentsFromURL() could also be a link to an internet resource:

url = "http://www.wu-wien.ac.at/usr/h02c/h0251406/e-commerce/vk6/textdocument01.sxw"

The statistics are counted „manually“ with the help of the XTextCursor. Manually
means, that there are also overall document properties doing this automatically (cp.
5.1.7 Example 05 – Statistics 2).

The XText interface has a method createTextCursor() to create a TextCursor.

OpenOffice.org Automation – Andreas Ahammer Page 33

„The text cursor travels through the text as a collapsed text range with identical
start and end as a point in text, or it can expand while it moves to contain a
target string.“ [Open03]

The TextCursor offers some methods to move the cursor, e.g. goLeft(), goRight(),
gotoStart(), gotoEnd(),...

In the swriter document the XTextCursor has three interfaces: XWordCursor (a text
cursor for words), XSecntenceCursor (a text cursor for sentences) and
XParagraphCursor (a text cursor for paragraphs).

To count paragraphs, sentences and words, the XTextCursor is set to „start“ and then
the appropriate cursor is going in a loop to the next paragraph, sentence or word and
count the passes.

-- Example 04
-- use the TextCursor to count the paragrahs, sentences and words of an existing
-- swriter-file

-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the sxw-file hidden from the internet */
url = "http://www.wu-wien.ac.at/usr/h02c/h0251406/e-commerce/vk6/textdocument01.sxw"
props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Hidden"
props[1]~Value = box("boolean", .true)
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
/* create a TextCursor */
xTextCursor = xWriterComponent~XTextDocument~getText~createTextCursor
/* create a Word-, Sentence- and ParagraphCursor */
xWordCursor = xTextCursor~XWordCursor
xSentenceCursor = xTextCursor~XSentenceCursor
xParagraphCursor = xTextCursor~XParagraphCursor
/* count paragraphs */
xTextCursor~gotoStart(.false)
paragraphs = 1 -- you start with the first paragraph
DO WHILE xParagraphCursor~gotoNextParagraph(.false) = .true

paragraphs = paragraphs + 1
END
/* count sentences */
xTextCursor~gotoStart(.false)
sentences = 1 -- you start with the first sentence
DO WHILE xSentenceCursor~gotoNextSentence(.false) = .true

sentences = sentences + 1
END
/* count words */
xTextCursor~gotoStart(.false)
words = 1 -- you start with the first word
DO WHILE xWordCursor~gotoNextWord(.false) = .true

words = words + 1
END
/* show statistics */
SAY "paragraphs:" paragraphs
SAY "sentences:" sentences
SAY "words:" words

OpenOffice.org Automation – Andreas Ahammer Page 34

::requires UNO.cls -- get UNO support

5.1.7 Example 05 – Statistics 2

This example is going to count the paragraphs, words and characters via the properties
of the general document information.

At first we need the interface XPropertySet from the XTextDocument. Now we are
able to set the properties with setPropertyValue() and get properties with
getPropertyValue(). So the instruction

xWordCount = xTextDocumentProps~getPropertyValue("WordCount")

creates a variable xWordCount with the current number of words.

-- Example 05
-- get the statistics of a swirter-file from the DocumentProperties
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the *.doc */
url = makeUrl("textdocument01.sxw") -- get the document from the current folder
props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Hidden"
props[1]~Value = box("boolean", .true)
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
/* create the TextObject and get the Properties*/
xTextDocumentProps = xWriterComponent~XTextDocument~XPropertySet
SAY "paragraphs: " xTextDocumentProps~getPropertyValue("ParagraphCount")
SAY "words: " xTextDocumentProps~getPropertyValue("WordCount")
SAY "characters: " xTextDocumentProps~getPropertyValue("CharacterCount")
::requires UNO.cls -- get UNO support
-- A function for getting the file in the current folder
::routine makeUrl
 return ConvertToURL(stream(arg(1), "c", "query exists"))

If you compare the results of „Example 04“ and „Example 05“ you will see, although
both examples use the same document they provide different counts. The reason for this
is, that in „Example 04“ the cursor is going to count the control characters as normal
characters. So e.g. the WordCursor take the ParagraphBreaks as word.

5.1.8 Example 06 – Text

To insert text in an swriter document and format it, we need again the cursors. If you
want to change the color of a the text and insert the text afterwards you'll need the
properties of the XTextCursor:

OpenOffice.org Automation – Andreas Ahammer Page 35

xTextCursorProps = xTextCursor~XPropertySet

Then set the text color:

xTextCursorProps~setPropertyValue("CharColor", box("int", "ff 00 ff"x ~c2d))

With "ff 00 ff"x ~c2d ObjectRexx converts a variable in hexadecimal to integer.
This is necessary because "CharColor" needs an integer, but colors are easier to handle
in hex form. The hex – model uses the RGB code to specify a color. E.g. white = (hex)
FFFFFF = (dec)16777215.

If you want to insert the current page number, you'll need the XPageCursor because this
cursor knows about the page properties. The interface XModel from the XTextDocument
has the method getCurrentController() to get the XController. The XController
provides the interface XTextViewCursorSupplier with the method getViewCursor()
to get the XViewCursor. From the XViewCursor you can get the XPageCursor with all
its properties.

-- Example 06
-- edit the text of a swirter-file
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* create the TextObject */
xWriterDocument = xWriterComponent~XTextDocument
xText = xWriterDocument~getText
/* create a Text- and a WordCursor */
xTextCursor = xText~createTextCursor
xWordCursor = xTextCursor~XWordCursor
/* create the CursorProperty */
xTextCursorProps = xTextCursor~XPropertySet
/* write the sentence */
xText~setString("This is the text!")
CALL syssleep 2
/* insert the word "old" */
xTextCursor~gotoStart(.false)
xWordCursor~~gotoNextWord(.false)~~gotoNextWord(.false)~~gotoNextWord(.false)
xText~insertString(xWordCursor, "old ", .false)
xTextCursor~gotoEnd(.false)
CALL syssleep 2
/* replace the word "old" */
xTextCursor~gotoStart(.false)
xWordCursor~~gotoNextWord(.false)~~gotoNextWord(.false)~~gotoNextWord(.false) -
 ~~gotoNextWord(.true)
xText~insertString(xWordCursor, "new ", .true) -- .true = replace mode
xTextCursor~gotoEnd(.false)
CALL syssleep 2
/* create a PageCursor */
xPageCursor = xWriterDocument~XModel~getCurrentController ~XTextViewCursorSupplier -
 ~getViewCursor~XPropertySet~XPageCursor
/* insert the current PageNumber */
xText~insertString(xWordCursor, (" [on page " || xPageCursor~getPage || "]") , -
 .false)

OpenOffice.org Automation – Andreas Ahammer Page 36

/* change the color of the characters */
xTextCursorProps~setPropertyValue("CharColor", box("int", "ff 00 00"x ~c2d))
/* insert a colored smilie */
CALL syssleep 1; xText~insertString(xWordCursor, " ;", .false)
CALL syssleep 0.5; xText~insertString(xWordCursor, "-", .false)
CALL syssleep 0.5; xText~insertString(xWordCursor, ")", .false)
/* set "modified" false -> UNO will not ask if you want to save the current document
 on close */
xWriterComponent~XModifiable~setModified(.false)
::requires UNO.cls -- get UNO support

5.1.9 Example 07 – Text Table

Text tables in OpenOffice.org consist of rows, rows consist of one or more cells and
cells can contain text or rows. The rows are addressed with numbers (1, 2,...) and the
columns are addressed with characters (A, B,...). It's also possible to split or merge cells,
but then the addressing of the cells is going to be very complex and so you should be
careful about this.

To insert a text table into an swriter document the XMultiServiceFactory of the
XTextDocument is needed. The XMultiServiceFactory can create the XTextTable
interface and the method initialize() of the XTextTable initializes the text table and
it appears on the swriter document.

To insert text in the cells with a special format you'll find a routine called setCellText
that makes the inserting very easy. Such an insert could be:

CALL setCellText "A1", "One", xTextTable

Another way to insert simple text is to call the cells of the text table with
getCellsByName() and insert text with setValue().

xTextTable~getCellByName("D3")~setValue(6)

It's also possible to insert formulas into the cells:

xTextTable~getCellByName("A4")~setFormula("sum <A2:A3>")

To change the properties of a cell the XTextTableCursor is required. It can be created
with the method createCursorByCellName() of the XTextTable and then the
properties like BackColor, BottomMargin, Width,.... can be set.

OpenOffice.org Automation – Andreas Ahammer Page 37

Figure 08: Example 07 – Text Table, Andreas Ahammer

-- Example 07
-- insert a table in an empty swriter-file
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* create the TextObject and the TextCursor */
xTextDocument = xWriterComponent~XTextDocument
xText = XTextDocument~getText
xTextCursor = xText~createTextCursor
/* create the MulitServiceFactory from the current document */
/* (otherwise the created objects cannot be inserted into the document) */
xDMsf = xTextDocument~XMultiServiceFactory
/* create the TextTable */
xTextTable = xDMsf~createInstance("com.sun.star.text.TextTable")~XTextTable
xTextTable~initialize(4, 4)
/* insert TextTable in the Text */
xText~insertTextContent(xTextCursor, xTextTable, .false)
/* insert text in the TextTable */
CALL setCellText "A1", "One", xTextTable
CALL setCellText "B1", "Two", xTextTable
CALL setCellText "C1", "Three", xTextTable
CALL setCellText "D1", "Four", xTextTable
/* insert values in the TextTable */
xTextTable~getCellByName("A2")~setValue(2)
xTextTable~getCellByName("A3")~setValue(1)
xTextTable~getCellByName("B2")~setValue(5)
xTextTable~getCellByName("B3")~setValue(7)
xTextTable~getCellByName("C2")~setValue(3)
xTextTable~getCellByName("C3")~setValue(4)
xTextTable~getCellByName("D2")~setValue(8)
xTextTable~getCellByName("D3")~setValue(6)
/* insert formulars in the TextTable */
xTextTable~getCellByName("A4")~setFormula("sum <A2:A3>")
xTextTable~getCellByName("B4")~setFormula("sum <B2:B3>")
xTextTable~getCellByName("C4")~setFormula("sum <C2:C3>")
xTextTable~getCellByName("D4")~setFormula("sum <D2:D3>")

OpenOffice.org Automation – Andreas Ahammer Page 38

/* create the TextTableCursor */
xTextTableCursor = xTextTable~createCursorByCellName("A4")
xTextTableCursorProps = xTextTableCursor~XPropertySet
bgColor = box("int", "00 ff ff"x ~c2d) -- determine color
xTextTableCursorProps~setPropertyValue("BackColor", bgColor)
xTextTableCursor~gotoCellByName("B4", .true)
xTextTableCursorProps~setPropertyValue("BackColor", bgColor)
xTextTableCursor~gotoCellByName("C4", .true)
xTextTableCursorProps~setPropertyValue("BackColor", bgColor)
xTextTableCursor~gotoCellByName("D4", .true)
xTextTableCursorProps~setPropertyValue("BackColor", bgColor)
::requires UNO.cls -- get UNO support
/* routine to set the text in a cell
 - cell: the cell you want to write in
 - text: the text you want to write in the cell
 - xTextTable: the table you want to use
*/
::routine setCellText

 use arg cell, text, xTextTable

xCellText = xTextTable~getCellByName(cell)~XText
xCellCursor = xCellText~createTextCursor()
cursorProps = xCellCursor~XPropertySet
cursorProps~setPropertyValue("CharColor", box("int", "ff 00 00"x ~c2d))
xCellText~setString(text)

5.1.10 Example 08 – Textfield

„Text fields are text contents that add a second level of information to text
ranges.“ [Open03]

Such information could be the date, the time, the page count, the file name, the author,...

The first (xTextFieldTime1) and the second (xTextFieldTime2) text field in the
example are the date and the time. Text fields can be created like text tables with the
XMultiServiceFactory of the current XComponent. The difference between
xTextFieldTime1 and xTextFieldTime2 are the properties. The second text field has
the property IsDate set to true, whereas default the text field
com.sun.star.text.TextField.DateTime shows the current time.

Between the text fields we insert a control character, more precisely a paragraph break:

xText~insertControlCharacter(xTextCursor, -
 bsf.getConstant("com.sun.star.text.ControlCharacter", "PARAGRAPH_BREAK"), -
 .false)

Therefore the static value PARAGRAPH_BREAK from the interface
com.sun.star.text.ControlCharacter is required. BSF provides the method
getConstant() to manage this.

The next innovation in this example is the XModifiable interface which, similar to the
XPrintable interface, every XDocument has to support. By calling the method
setModified() you can define with true or false if OpenOffice.org should ask if you
would save the current document on closing.

OpenOffice.org Automation – Andreas Ahammer Page 39

Figure 09: Example 08 – Textfield, Andreas Ahammer

-- Example 08
-- insert a textfield (with the current time) in an empty *.sxw - file
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = "private:factory/swriter"
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* create the TextObject and the TextCursor */
xTextDocument = xWriterComponent~XTextDocument
xText = XTextDocument~getText()
xTextCursor = xText~createTextCursor()
/* create the MulitServiceFactory for the current document */
/* (otherwise the created objects cannot be inserted into the document) */
xDMsf = xTextDocument~XMultiServiceFactory
/* create the TextFields */
xTextFieldTime1 = xDMsf~createInstance("com.sun.star.text.TextField.DateTime") -
 ~XTextField
-- set the properties for TextFieldTime1- so we can see the date
xTextFieldTime1~XPropertySet~setPropertyValue("IsDate", box("boolean", .true))
xTextFieldTime2 = xDMsf~createInstance("com.sun.star.text.TextField.DateTime") -
 ~XTextField
/* insert the TextFieldTime1 */
xTextCursor~gotoStart(.false)
xText~insertTextContent(xTextCursor, xTextFieldTime1, .false)
/* insert a "paragraph_break" and the TextFieldTime2 */
xTextCursor~gotoEnd(.false)
xText~insertControlCharacter(xTextCursor, -
 bsf.getConstant("com.sun.star.text.ControlCharacter", "PARAGRAPH_BREAK"), -
 .false)
xText~insertTextContent(xText~getEnd, xTextFieldTime2, .false)
/* set "modified" false -> UNO will not ask to save the current document
 on close */
xWriterComponent~XModifiable~setModified(.false)
::requires UNO.cls -- get UNO support

5.1.11 Example 09 – Search, Replace and Insert Text

OpenOffice.org Automation – Andreas Ahammer Page 40

Example 09 shows how to search and replace text and how to insert text from another
existing document.

At first an existing swriter document is opened and the XReplaceable interface is
created which provides the method createReplaceDiscriptor() to create the
XReplaceDiscriptorInterface. Now the string to search for, the string to replace and
the properties (how to insert the new string, e.g. bold) are defined. At last the replace is
done with the current properties.

To insert text from another swriter document the XDocumentInsertable interface from
the XTextCursor is needed. With the method insertDocumentFromURL() the insertion
can be done.

The last function in this example is to store the current document. The XStoreable
interface from the XComponent has a method storeAsURL() which needs an URL and
properties to store as a file. The URL comes from the routine makeUrl which returns the
current folder.

-- Example 09
-- you have an inquiry - so make an order...
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = makeUrl("inquiry.sxw") -- get the document from the current folder
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
CALL syssleep 3
/* create the TextObject */
xWriterDocument = xWriterComponent~XTextDocument
xText = xWriterDocument~getText
/* create TextCursors */
xTextCursor = xText~createTextCursor
/* create the ReplaceDescriptor */
xReplaceable = xWriterDocument~xReplaceable
xReplaceDescriptor = xReplaceable~createReplaceDescriptor()
/* search for "Inquiry" and replace it with "Order" in BOLD weight */
xReplaceDescriptor~~setSearchString("inquiry")~~setReplaceString("Order")
props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "CharWeight"
props[1]~Value = box("float", -
 bsf.getConstant("com.sun.star.awt.FontWeight", "BOLD"))
-- replace text gets formatted in BOLD font weight
xReplaceDescriptor~XPropertyReplace~setReplaceAttributes(props)
-- now do the replace
xReplaceable~replaceAll(xReplaceDescriptor)
/* insert a text from another textdocument */
xTextCursor~gotoEnd(.false)
insertURL = makeUrl("ordertext.sxw") -- get the document from the current folder
xTextCursor~XDocumentInsertable~xDocumentInsertable -
 ~insertDocumentFromURL(insertURL, .UNO~noProps)

/* save the document under a new name */
xWriterComponent~XStorable~storeAsURL(makeUrl("order.sxw"), .UNO~noProps)

OpenOffice.org Automation – Andreas Ahammer Page 41

::requires UNO.cls -- get UNO support
-- A function for getting the file in the current folder
::routine makeUrl
 return ConvertToURL(stream(arg(1), "c", "query exists"))

5.1.12 Example 10 – Convert a swriter document to pdf

This example is a small and really useful program to convert text documents to pdf.

Here we need the com.sun.star.lang.XMultiComponentFactory to create the
instance com.sun.star.ui.dialogs.FilePicker. So we have to connect to the server
and retrieve the XContext object and the XMultiComponentFactory.

xContext = UNO.connect()
XMcf = xContext~getServiceManager

Then we can create the Desktop within this context.

oDesktop = UNO.createDesktop(xContext)
xComponentLoader = oDesktop~XDesktop~XComponentLoader

The next step is that the user can declare which existing document should be opened.
Therefore we are going to create an instance of the FilePicker of OpenOffice.org

fd = xMcf~createInstanceWithContext("com.sun.star.ui.dialogs.FilePicker", xContext)
xfp = fd~XFilePicker

and set the properties like the path, the title and the filetypes.
urlPath = convertToUrl(directory()) -- convert current directory to URL
xfp~setDisplayDirectory(urlPath) -- determine directory to start out with
ret = xfp~setTitle(date("S") time()": Please choose a writer file to convert to PDF!")
xfm = xfp~XFilterManager -- get the filter manager interface
fileTypes = "*.sxw;*.doc;*.txt;*.text"
xfm~appendFilter("Text files" pp(fileTypes), fileTypes) -- first filter („current“ one)
xfm~appendFilter("All files", "*") -- second filter

So we get the correct URL to the file which should be converted. The methods date()
and time() return the current date and time. The method pp() prints the passed string
on the control panel in a nice format.

Then swriter loads the file hidden and stores it with special properties. The important
property is the FilterName which is set to writer_pdf_export. So OpenOffice.org
knows which filter should be used to export the file.

You can find a list of all possible import and export filters at [Pito04], page 218.

Notice that with this little program you can convert every file to pdf which can be
imported by swriter.

OpenOffice.org Automation – Andreas Ahammer Page 42

Figure 10: Example 10 – pdf FilePicker, Andreas Ahammer

-- Example 10
-- Open an existing textfile and convert it to *.pdf
-- Possible files are *.sxw, *.doc, *.txt,....
/* initialize connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the XContext object
XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop(xContext) -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* create the FilePickerDialog */
url = getFileName(xMcf, xContext) -- get file name from user
IF url =.nil THEN EXIT -- user did not pick a file
SAY "File:" pp(ConvertFromURL(url)) "..."
props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Hidden"
props[1]~Value = box("boolean", .true)
xWriterComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, props)
xStorable = xWriterComponent~XStorable -- get xStorable interface
/* convert it to *.pdf */
props = bsf.createArray(.UNO~propertyValue, 2)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "FilterName"
props[1]~Value = "writer_pdf_Export"
props[2] = .UNO~PropertyValue~new
props[2]~Name = "CompressMode"
props[2]~Value = 2
storeURL = substr(url, 1, lastpos(".", url)) || "pdf" -- create output file name
xStorable~storeToUrl(storeURL, props) -- store the file with props to URL

OpenOffice.org Automation – Andreas Ahammer Page 43

say "File:" pp(ConvertFromURL(storeURL)) "successfully created!"
::requires UNO.cls -- get UNO support
::routine getFileName -- FilePicker dialog to ask the user to pick a file to convert
 use arg xMcf, xContext ,oDesktop -- retrieve multi service factory
 fd = xMcf~-
 createInstanceWithContext("com.sun.star.ui.dialogs.FilePicker", xContext)
 xfp = fd~XFilePicker -- get the interface for driving the FilePicker
 -- functionality
 urlPath = convertToUrl(directory()) -- convert current directory to URL
 xfp~setDisplayDirectory(urlPath) -- determine directory to start out with
 ret = xfp~setTitle(date("S") time() || -
 ": Please choose a writer file to convert to PDF!")
 xfm = xfp~XFilterManager -- get the filter manager interface
 fileTypes = "*.sxw;*.doc;*.txt;*.text"
 xfm~appendFilter("Text files" pp(fileTypes), fileTypes) -- first filter is
 -- "current" one
 xfm~appendFilter("All files", "*")
 ret = xfp~execute -- execute the dialog
 IF ret=1 THEN -- 1...o.k., 0...cancel
 file = xfp~files[1]
 fd~XComponent~dispose -- close dialog
 IF ret=1 THEN return file
 return .nil -- canceled by user

5.2 scalc - examples
Scalc documents consists of spreadsheets, which provide functions to operate on data
cells and to do complex calculations. That's why they are called spreadsheet documents.

„The core of the spreadsheet document model are the spreadsheets contained in
the spreadsheet container. When working with document data, almost everything
happens in the spreadsheet objects extracted from the spreadsheets container.“
[Open03]

The most important interface is the com.sun.star.sheet.XSpreadsheet because it
provides access to the cells. So we need it for every scalc – example.

5.2.1 Example 11 – Hello World

The first example for scalc application is „Hello World“. It shows how to insert a simple
string into the first cell.

The example starts with opening an empty scalc document and get the XSpreadSheet
interface. Then it is possible to insert a string into a specific cell calling

CALL UNO.setCell xSheet, 0, 0, "HelloWorld!"

OpenOffice.org Automation – Andreas Ahammer Page 44

The function setCell is predefined in UNO.cls and provides an easy way to insert
strings and formulas to cells.

Figure 11: Example 11 – Hello World, Andreas Ahammer

-- Example 11
-- open a blank *.sxc - file and insert some text
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
 ~XSpreadSheet
/* insert some text */
CALL UNO.setCell xSheet, 0, 0, "HelloWorld!"
::requires UNO.cls -- get UNO support

5.2.2 Example 12 – Print Area

In Example 12 we want to print a specific area of the spreadsheet document. The
printing process is equal to the printing process of the swriter document because both
are OfficeDocuments.

So we have only to define the area we want to print. At first a CellRange is required to
specify the area (in the example the area is "B6:E13"):

myRange = xSheet~XCellRange~getCellRangeByName("B6:E13")

Then we have to get the address of the underlying data:

myAddr = myRange~XCellRangeAddressable~getRangeAddress

and create an array so that we can set the print area of the interface XPrintAreas.

OpenOffice.org Automation – Andreas Ahammer Page 45

In this example we have to load the Java class
"com.sun.star.table.CellRangeAddress" to make an array, therefore we need the
instruction

CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"

So we can create a CellRangeAddress – Array like a PropertyValue – Array:

oAddr = bsf.createArray(.UNO~CellRangeAddress, 1)

Only the cells within the red „border“ are printed:

Figure 12: Example 12 – Print Area, Andreas Ahammer

-- Example 12
-- open a *.sxw - file and print a specified area 2 times
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface

/* get file from current directory, turn it into an UNO URL */
url = makeUrl("print.sxc") -- get the document from the current folder
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
 ~XSpreadSheet
/* create a cell range, then get the CellRangeAddress */
myRange = xSheet~XCellRange~getCellRangeByName("B6:E13")
myAddr = myRange~XCellRangeAddressable~getRangeAddress
-- load the required class "com.sun.star.table.CellRangeAddress"
CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"
oAddr = bsf.createArray(.UNO~CellRangeAddress, 1) -- create Java array
oAddr[1] = myAddr -- assign CellRangeAddress
xSheet~XPrintAreas~setPrintAreas(oAddr) -- set PrintAreas
/* set the printer */
xPrintable = xCalcComponent~XPrintable
props = bsf.createArray(.UNO~propertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "Name"
props[1]~Value = "hp deskjet 5600 series" -- the name of your printer
xPrintable~setPrinter(props)

OpenOffice.org Automation – Andreas Ahammer Page 46

props[1]~Name = "CopyCount"
props[1]~Value = box("short", 2) -- two copies
xPrintable~print(props) -- print it
::requires UNO.cls -- get UNO support
::routine makeUrl -- operating system independent
 return ConvertToURL(stream(arg(1), "c", "query exists"))

5.2.3 Example 13 – Cell formatting

When formatting cells there are two options to do this:

1. Get the XCell with the method getCellByPostion() from the XSpreadSheet
interface and set the properties of a single cell.

2. Make a XCellRange from the XSpreadSheet interface and set the properties of
the XCellRange. So all including cells will have the chosen properties.

Note: If you want to insert a formula into a cell, you have to insert the English version
of the formula. E.g. to get the current date in German the formula is shown in scalc with
"=Heute()", but when automating OpenOffice.org you still have to insert the English
version "=Today()".

Figure 13: Example 13 – Cell formattings, Andreas Ahammer

--- Example 13
-- open a blank *.sxc - file and test the formats
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxc - file */

OpenOffice.org Automation – Andreas Ahammer Page 47

url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
 ~XSpreadSheet
/* insert some text */
CALL UNO.setCell xSheet, 0, 0, "Matr.Nr.:"
CALL UNO.setCell xSheet, 1, 0, "0251406"
CALL UNO.setCell xSheet, 0, 1, "Datum:"
-- Remember: even if you have another version of UNO then the english one,
-- you still have to write the formulas in english
CALL UNO.setCell xSheet, 1, 1, "=TODAY()"
/* format the cells via xCell*/
xCell = xSheet~getCellByPosition(1, 1) -- cell "A2"
xPropertySet11 = xCell~XPropertySet~setPropertyValue("CellBackColor", -
 box("int", "00 00 ff"x ~c2d))
xCell = xSheet~getCellByPosition(0, 1) -- cell "B2"
xPropertySet01 = xCell~XPropertySet~setPropertyValue("CharColor", -
 box("int", "ff 00 00"x ~c2d))
/* format the cells voa xCellRange */
xPropSet = xSheet~XCellRange~getCellRangeByName("A1:B1")~XPropertySet
xPropSet~setPropertyValue("CharWeight", box("float", -
 bsf.getConstant("com.sun.star.awt.FontWeight", "BOLD")))
::requires UNO.cls -- get UNO support

5.2.4 Example 14 – Function Autofill

With the method fillAuto() from the interface XCellSeries it's possible to complete
rows and colums automatically. To create the XCellSeries interface from a
XCellRange I wrote a simple routine:

::routine getCellSeries
 use arg xSheet, aRange
 return xSheet~XCellRange~getCellRangeByName(aRange)~XCellSeries

Now you can call the method fillAuto() with the desired properties.

Figure 14: Example 14 – Function Autofill, Andreas Ahammer

OpenOffice.org Automation – Andreas Ahammer Page 48

--- Example 14
-- open a blank *.sxc - file and test the autofill-function
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
 ~XSpreadSheet
/* insert some text */
CALL UNO.setCell xSheet, 0, 0, "1" -- cell "A1"
CALL UNO.setCell xSheet, 1, 0, "=(A1*3)" -- cell "B1"
CALL UNO.setCell xSheet, 2, 0, "=(A1*10*RAND())" -- cell "C1"
CALL UNO.setCell xSheet, 3, 0, "1" -- cell "D1"
/* and AutoFill it */
to_bottom = bsf.getConstant("com.sun.star.sheet.FillDirection", "TO_BOTTOM")
getCellSeries(xSheet, "A1:C10")~fillAuto(to_bottom, 1)
getCellSeries(xSheet, "D1:D10")~fillAuto(to_bottom, 2)
/* save the result - we need it for the next example */
storeURL = makeURL("testnumbers.sxc") -- save the document in the current folder
xCalcComponent~XStorable~storeAsURL(storeURL, .UNO~noProps)
::requires UNO.cls -- get UNO support
::routine getCellSeries
 use arg xSheet, aRange
 return xSheet~XCellRange~getCellRangeByName(aRange)~XCellSeries
-- A function for getting the file in the current folder
::routine makeUrl
 return ConvertToURL(directory() || "\" || arg(1))

5.2.5 Example 15 – Sort

A core function of all tables is that they are able to sort in specific ways. The service
com.sun.star.table.TableSortDescriptor offers such functions to sort a scalc
document.

At first an existing document, which was made in „Example 14 – Function Autofill“ is
opened and the way to sort the table is defined. In this context we need the
com.sun.star.table.TableSortField to set the properties and to sort the table by the
first column ascending.

Then the properties for the XSortable interface are created. Therefore we need the
properties of the TableSortField and furthermore we set the property
ContainsHeader to true. So the last 9 rows are going to be sorted by the first column
ascending.

-- Example 15
-- open an existing *.sxc - file, insert a header and sort the first column

OpenOffice.org Automation – Andreas Ahammer Page 49

-- ascending
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface

/* open the "testnumbers.sxc" from current folder/directory */
url = ConvertToURL(directory() || "\testnumbers.sxc")
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
 ~XSpreadSheet
/* create the CellRange */
xRange = xSheet~XCellRange~getCellRangeByName("A1:A10")
/* define the fields to sort */
CALL UNO.loadClass "com.sun.star.table.TableSortField" -- load UNO-class
tableSortField = bsf.createArray(.UNO~TableSortField, 1)
tableSortField[1] = .UNO~TableSortField~new
tableSortField[1]~Field = 1
tableSortField[1]~IsAscending = .true
tableSortField[1]~IsCaseSensitive = .false
/* define the sort descriptor */
props = bsf.createArray(.UNO~propertyValue, 2)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "ContainsHeader"
props[1]~Value = box("boolean", .true)
props[2] = .UNO~PropertyValue~new
props[2]~Name = "SortFields"
props[2]~Value = tableSortField
SAY "sleeping, then sorting descendingly first column, leaving first row as" -
 "header alone..."
CALL syssleep 3
/* performe the sorting */
xRange~XSortable~sort(props) -- perform the sorting
::requires UNO.cls -- get UNO support

5.2.6 Example 16 – Database Function

Scalc documents offer a range of database functions like filter cell ranges with specific
properties.

This example inserts a list of names and random numbers into a spreadsheet. The
random numbers are made by ObjectRexx because we need numbers in the cells and no
formulas - so they are able to filter.

The interface XFilterDecriptor can filter rows by defined properties. In our case we
want all pairs of name / number where the number is greater than or equal to 2000.

Note that the property IsNumeric is still false even though we want to filter a number.

At last we set the filter properties, so the method filter() knows that we have a
header.

OpenOffice.org Automation – Andreas Ahammer Page 50

Figure 15: Example 16 – Database Function, Andreas Ahammer

-- Example 16
-- open a blank *.sxc, fill it with data and show a database-operation (filtering)
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxc - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
 ~XSpreadSheet
/* insert some text */
CALL UNO.setCell xSheet, 0, 0, "Name" -- cell "A1"
CALL UNO.setCell xSheet, 1, 0, "Salary" -- cell "B1"
DO i=1 TO 10

CALL UNO.setCell xSheet, 0, i, "Name"i -- cell "A"i
CALL UNO.setCell xSheet, 1, i, RANDOM(500, 3000) -- cell "B"i

END
CALL syssleep 3
/* create the CellRange to filter */
xRange = xSheet~XCellRange~getCellRangeByName("A1:A11")
xFilter = xRange~XSheetFilterable -- get filter interface for range
xFilterDesc = xFilter~createFilterDescriptor(.true)
/* define the table filter fields */
CALL UNO.loadClass "com.sun.star.sheet.TableFilterField"
aFilterFields = bsf.createArray(.UNO~TableFilterField, 1)
aFilterFields[1] = .UNO~TableFilterField~new
aFilterFields[1]~Field = 1
aFilterFields[1]~IsNumeric = .false
aFilterFields[1]~Operator = bsf.getConstant("com.sun.star.sheet.FilterOperator",-
 "GREATER_EQUAL")
aFilterFields[1]~StringValue = "2000"
xFilterDesc~setFilterFields(aFilterFields)
/* set the FilterProperties and filter */
xFilterProps = xFilterDesc~XPropertySet~setPropertyValue("ContainsHeader", -
 box("boolean", .true))
xFilter~filter(xFilterDesc)

OpenOffice.org Automation – Andreas Ahammer Page 51

::requires UNO.cls -- get UNO support

5.2.7 Example 17 – Document Style

In this example a so called „overall document feature“ is discussed: the style.

„A style contains all formatting properties for a specific object. All styles of the
same type are contained in a collection named a style family. Each style family
has a specific name to identify it in the collection.“ [Open03]

A new CellStyle „MyNewCellStyle“ is created and the style of the cells A1:D4 is set
to this new style.

The XMultiServiceManager of the current XDocument creates the XCellStyle which
can be added with the method insertByName() to the cell style container. If you want
to set cells to the created style, you need the XPropertySet interface from a
XCellRange and call the method setPropertyValue().

xCellRange~XPropertySet~setPropertyValue("CellStyle", "MyNewCellStyle")

Figure 16: Example 17 – Document Style, Andreas Ahammer

-- Example 17
-- open a blank *.sxc and set the CellStyle
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxc - file */
url = "private:factory/scalc"
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get the SpreadSheet you want to work with */
xDocument = xCalcComponent~XSpreadSheetDocument
-- get first sheet in spreadsheet
xSheet = xDocument~getSheets~XIndexAccess~getByIndex(0)~XSpreadSheet

/* insert some text */
CALL UNO.setCell xSheet, 0, 0, "look at the cell style..."

OpenOffice.org Automation – Andreas Ahammer Page 52

CALL syssleep 2
/* get the cell style container */
xFamiliesSupplier = xDocument~XStyleFamiliesSupplier
xCellStyle = -
 xFamiliesSupplier~getStyleFamilies~getByName("CellStyles")~XNameContainer
/* create a new cell style */
xServiceManager = xDocument~XMultiServiceFactory
oCellStyle = xServiceManager~createInstance("com.sun.star.style.CellStyle")
xCellStyle~insertByName("MyNewCellStyle", oCellStyle)
/* modify properties of the new style */
xPropertySet = oCellStyle~XPropertySet
xPropertySet~setPropertyValue("CharWeight", box("float", -
 bsf.getConstant("com.sun.star.awt.FontWeight", "BOLD")))
xPropertySet~setPropertyValue("CharColor", box("int", "ff 00 00"x ~c2d))
CALL syssleep 2
/* create a CellRange and set the PropertyStyle */
xCellRange = xSheet~getCellRangeByPosition(0, 0, 3, 3)
xCellRange~XPropertySet~setPropertyValue("CellStyle", "MyNewCellStyle")
::requires UNO.cls -- get UNO support

5.2.8 Example 18 – Charts 1

„Chart documents produce graphical representations of numeric data. They are
always embedded objects inside other OpenOffice.org documents.“ [Open03]

So it's not mandatory to create charts only in spreadsheet documents. Because
spreadsheet documents nearly always hold numeric data and they are common to create
charts, the next two examples are about charts.

The XTableChartsSupplier, an interface of XSpreadSheet, has the method
getCharts() to access the XTableCharts. Adding a new chart to the XTableCharts is
enabled through the method addNewByName(). Among other things this method needs
the name of the chart, the frame for chart and the data.

The data is a simple CellRangeAddress as already discussed in 5.2.2 Example 12 –
Print Area.

The frame for the chart is the com.cun.star.awt.Rectangle service. This service
knows the position and the size of the chart. The numeric values are 1/100th mm.

OpenOffice.org Automation – Andreas Ahammer Page 53

Figure 17: Example 18 – Charts 1, Andreas Ahammer

-- Example 18
-- open an existing *.sxc - file and create a simple chart
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the *.sxc - file */
-- get the document from the current folder
url = ConvertToURL(directory()"/testnumbers.sxc")
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -
 ~XSpreadSheet
/* create the frame for the Chart */
oRect = .bsf~new("com.sun.star.awt.Rectangle")
oRect~X = 300
oRect~Y = 5000
oRect~Width = 18000
oRect~Height = 8000
/* catch the underlying data and make a CellRange*/
myRange=xSheet~XCellRange ~getCellRangeByName("A1:C10")
myAddr = myRange~XCellRangeAddressable~getRangeAddress
/* create the CellRangeAddress for the Chart */
CALL UNO.loadClass "com.sun.star.table.CellRangeAddress"
oAddr = bsf.createArray(.UNO~CellRangeAddress, 1)
oAddr[1] = myAddr
/* get the Sheet's ChartsSupplier, add a new Chart */
xTableCharts = xSheet~XTableChartsSupplier~getCharts
xTableCharts~addNewByName("FirstChart", oRect, oAddr, .true, .true)
/* save the result - we need it for the next example */
storeURL = makeURL("charts.sxc") -- save the document in the current folder
xCalcComponent~XStorable~storeAsURL(storeURL, .UNO~noProps)

OpenOffice.org Automation – Andreas Ahammer Page 54

::requires UNO.cls -- get UNO support
::routine makeUrl
 return ConvertToURL(directory() || "\" || arg(1))

5.2.9 Example 19 – Charts 2

Here we are going to open the existing file charts.sxc (made by Example 18 – Charts 1),
get the current chart, make a 3D-Chart and change some properties.

To access an existing chart by name, we need the method getByName()from the
XNameAccess interface, which is provided by the interface XTableChartsSupplier.
Now we need the interface XDiagram to set the properties for the chart. We get it from
the method getDiagram() of the XChartDocument interface, which is provided by the
XComponent.

At last we set some properties of the interface X3DDisplay, an interface used for 3D-
Shapes, specially in sdraw.

Figure 18: Example 19 – Charts 2, Andreas Ahammer

--- Example 19
-- open an existing *.sxc - file, edit a chart and make a 3D-chart
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxc - file */
-- get the document from the current folder
url = ConvertToURL(directory()"/charts.sxc")
xCalcComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* get first sheet in spreadsheet */
xSheet = xCalcComponent~XSpreadSheetDocument~getSheets~XIndexAccess~getByIndex(0) -

OpenOffice.org Automation – Andreas Ahammer Page 55

 ~XSpreadSheet
/* get the Sheet's ChartsSupplier, get first chart */
xTableCharts = xSheet~XTableChartsSupplier~getCharts
xChart = xTableCharts~XNameAccess~getByName("FirstChart")~XTableChart
/* get the embedded Object */
xComponent = xChart~XEmbeddedObjectSupplier~getEmbeddedObject
/* get the Diagram from the ChartDocument */
xDiagram = xComponent~XChartDocument~getDiagram
/* set the properties */
xPropsChart = xDiagram~XPropertySet
CALL syssleep 2
xPropsChart~setPropertyValue("Dim3D", box("bool", .true))
CALL syssleep 2
xPropsChart~setPropertyValue("Deep", box("bool", .true))
CALL syssleep 2
xPropsChart~setPropertyValue("SolidType", box("INT", -

 bsf.getConstant("com.sun.star.chart.ChartSolidType", "CYLINDER")))
/* set the FloorProperties */
xPropsFloor = xDiagram~X3DDisplay~getFloor~XPropertySet
xPropsFloor~setPropertyValue("FillColor", box("int", "00 00 00"x ~c2d))
xPropsFloor~setPropertyValue("FillBackground", box("boolean", .true))
::requires UNO.cls -- get UNO support

5.3 sdraw and simpress – Examples
„Draw and Impress are vector-oriented applications with the ability to create
drawings and presentations. The drawing capabilities of Draw and Impress are
identical. Both programs support a number of different shape types, such as
rectangle, text, curve, or graphic shapes, that can be edited and arranged in
various ways. Impress offers a presentation functionality where Draw does
not. Impress is the ideal application to create and show presentations. It
supports special presentation features, such as an enhanced page structure,
presentation objects, and many slide transition and object effects. Draw is
especially adapted for printed or standalone graphics, whereas Impress is
optimized to fit screen dimensions and offers effects for business presentations.“
[Open03]

5.3.1 Example 20 – Hello World

In the first sdraw example a simple shape, a rectangle, is created which shows the text
„HelloWorld“.

A very important interface is the XDrawPage because it contains all shapes on a draw
page.

With the help of the XMultiServiceFactory of the XComponent it's possible to create
the service com.sun.star.drawing.RectangleShape and so the XShape interface
from the RectangleShape.

OpenOffice.org Automation – Andreas Ahammer Page 56

To insert the XShape to the XDrawPage, the XShape needs a size (a
com.sun.star.awt.Size service) and a position (a com.sun.star.awt.Point
service).

Inserting a text into the rectangle is the same procedure like inserting text in a swriter
document. The only difference is, that the XText interface comes from XShape instead
of XDocument.

Figure 19: Example 20 – Hello World, Andreas Ahammer

-- Example 20
-- open a blank *.sxc and set the CellStyle
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxd - file */
url = "private:factory/sdraw"
xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
-- need document's factory to be able to insert created objects
xDocumentFactory = xDrawComponent~XMultiServiceFactory
/* get draw page by index */
xDrawPage = xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0)~XDrawPage
/* create a Rectangle and add it to the shape */
xShape = xDocumentFactory~createInstance("com.sun.star.drawing.RectangleShape") -
 ~XShape
-- format the variables
shapeX = 3000
shapeY = 3000
xShape~setPosition(.bsf~new("com.sun.star.awt.Point", shapeX, shapeY))
-- format the variables
shapeWidth = 5000
shapeHeight = 2500
xShape~setSize(.bsf~new("com.sun.star.awt.Size", shapeWidth, shapeHeight))
xDrawPage~add(xShape) -- add new shape to first draw page
/* now we can insert text into the rectangle */
xShape~XText~setString("Hello World!")
::requires UNO.cls -- get UNO support

5.3.2 Example 21 – Group Function

If you have more than one shape on the XDrawPage you can group them to handle all
shapes as one object.

OpenOffice.org Automation – Andreas Ahammer Page 57

At first 2 shapes, a rectangle and an ellipse, are added to the XDrawPage. There are a lot
of possible properties to set like the corner radius, the shadow, the fill and the line color,
the shear and the rotate angle,...

To group the two shapes we need the XShapes interface from the
com.sun.star.drawing.ShapeCollection service. Then we can add both shapes and
make a group.

After that we are able to move both object (the group) like one object.

Note that in this example we also need the XMultiComponentFactory (c.p. Example 10
– Convert a swriter document to pdf).

Figure 20: Example 21 – Group Function, Andreas Ahammer

-- Example 21
-- handling the properties of a shape and group 2 shapes
/* initialize connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the XContext object
XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxd - file */
url = "private:factory/sdraw"
xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
xDocumentFactory = xDrawComponent~XMultiServiceFactory
/* get draw page by index */
xDrawPage = xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0)~XDrawPage
/* create a Rectangle and add it to the shape */
shapeRectangle = -

xDocumentFactory~createInstance("com.sun.star.drawing.RectangleShape")
xShapeRectangle = shapeRectangle~XShape
-- format the variables
shapeX = 3000
shapeY = 3000

OpenOffice.org Automation – Andreas Ahammer Page 58

xShapeRectangle~setPosition(.bsf~new("com.sun.star.awt.Point", shapeX, shapeY))
-- format the variables
shapeWidth = 5000
shapeHeight = 2500
xShapeRectangle~setSize(.bsf~new("com.sun.star.awt.Size", shapeWidth, shapeHeight))
xDrawPage~add(xShapeRectangle) -- add shape to first draw page
/* set the properties of the rectangle shape */
xShapeProps = xShapeRectangle~XPropertySet
-- set the CornerRadius
xShapeProps~setPropertyValue("CornerRadius", box("int", 1000))
-- set the Shadow
xShapeProps~setPropertyValue("Shadow", box("boolean", .true))
xShapeProps~setPropertyValue("ShadowXDistance", box("int", 250))
xShapeProps~setPropertyValue("ShadowYDistance", box("int", 250))
-- and set the Colors
xShapeProps~setPropertyValue("FillColor", box("int", "ff 00 ff"x ~c2d))
xShapeProps~setPropertyValue("LineColor", box("int", "00 00 ff"x ~c2d))
-- set the Rotation
CALL syssleep 2
xShapeProps~setPropertyValue("ShearAngle", box("int", 1000))
CALL syssleep 2
xShapeProps~setPropertyValue("RotateAngle", box("int", 1000))
CALL syssleep 2
/* insert another shape */
shapeEllipse = xDocumentFactory~createInstance("com.sun.star.drawing.EllipseShape")
xShapeEllipse = shapeEllipse~XShape
shapeX = 3500
shapeY = 3500
xShapeEllipse~setPosition(.bsf~new("com.sun.star.awt.Point", shapeX, shapeY))
shapeWidth = 2000
shapeHeight = 2000
xShapeEllipse~setSize(.bsf~new("com.sun.star.awt.Size", shapeWidth, shapeHeight))
xDrawPage~add(xShapeEllipse)
/* now group the 2 shapes */
-- get ShapeCollection from the XMultiComponentFactory
xObj = xMcf~-
 createInstanceWithContext("com.sun.star.drawing.ShapeCollection", xContext)
xToGroup = xObj~XShapes
xToGroup~add(xShapeRectangle)
xToGroup~add(xShapeEllipse)
xShapeGrouper = xDrawPage~xShapeGrouper
xShapeGroup = xShapeGrouper~group(xToGroup)
/* so we can move both shapes at once */
CALL syssleep 2
shapeX = 5000
shapeY = 5000
xShapeGroup~setPosition(.bsf~new("com.sun.star.awt.Point", shapeX, shapeY))
::requires UNO.cls -- get UNO support

5.3.3 Example 22 – Fill Function

There are a lot of options to fill shapes and so you can create easy a lot of nice looking
objects. The service com.sun.star.awt.Gradient offers many properties for the fine
tuning of the fill style.

OpenOffice.org Automation – Andreas Ahammer Page 59

Other properties of the shapes are the distances of the text which can be inserted. E.g.
here we insert a text into a rectangle with a left, right, upper and lower distance of
precisely 25 mm.

Figure 21: Example 22 – Fill Function, Andreas Ahammer

-- Example 22
-- handling the properties of a shape and group 2 shapes
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxd - file */
url = "private:factory/sdraw"
xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
xDocumentFactory = xDrawComponent~XMultiServiceFactory
/* get draw page by index */
xDrawPage = xDrawComponent~XDrawPagesSupplier~getDrawPages~getByIndex(0)~XDrawPage
/* create a Rectangle and add it to the shape */
shapeRectangle = -

xDocumentFactory~createInstance("com.sun.star.drawing.RectangleShape")
xShapeRectangle = shapeRectangle~XShape
-- set the position
shapeX = 0
shapeY = 0
xShapeRectangle~setPosition(.bsf~new("com.sun.star.awt.Point", shapeX, shapeY))
-- set the size
shapeWidth = 21000
shapeHeight = 8000
xShapeRectangle~setSize(.bsf~new("com.sun.star.awt.Size", shapeWidth, shapeHeight))
-- add the Rectangle to the DrawPage
xDrawPage~add(xShapeRectangle)
/* set the properties of the rectangle shape */
xShapeProps = xShapeRectangle~XPropertySet
-- set the Colors
xShapeProps~setPropertyValue("FillColor", box("int", "ff 00 ff"x ~c2d))
xShapeProps~setPropertyValue("LineColor", box("int", "00 00 ff"x ~c2d))
oGradient = .bsf~new("com.sun.star.awt.Gradient")
oGradient~Style = bsf.getConstant("com.sun.star.awt.GradientStyle", "LINEAR")
oGradient~StartColor = 95847395
oGradient~EndColor = 23123123
oGradient~Angle = 450
oGradient~Border = 0
oGradient~XOffset = 0
oGradient~YOffset = 0

OpenOffice.org Automation – Andreas Ahammer Page 60

oGradient~StartIntensity = 100
oGradient~EndIntensity = 100
oGradient~StepCount = 10
xShapeProps~setPropertyValue("FillStyle", -

bsf.getConstant("com.sun.star.drawing.FillStyle", "GRADIENT"))
xShapeProps~setPropertyValue("FillGradient", oGradient)
-- and set the Text
xShapeProps~setPropertyValue("TextFitToSize", -

bsf.getConstant("com.sun.star.drawing.TextFitToSizeType", "PROPORTIONAL"))
xShapeProps~setPropertyValue("TextLeftDistance", box("int", 2500))
xShapeProps~setPropertyValue("TextRightDistance", box("int", 2500))
xShapeProps~setPropertyValue("TextUpperDistance", box("int", 2500))
xShapeProps~setPropertyValue("TextLowerDistance", box("int", 2500))
xText = xShapeRectangle~XText
xTextCursor = xText~createTextCursor
xTextCursor~gotoEnd(.false)
xTextRange = xTextCursor~XTextRange
xTextRange~setString("using TextFitToSize")
CALL sysSleep 2
xTextProps = xTextRange~XPropertySet
xTextProps~setPropertyValue("ParaAdjust", -

bsf.getConstant("com.sun.star.style.ParagraphAdjust", "CENTER"))
xTextProps~setPropertyValue("CharColor", box("int", "ff 00 00"x ~c2d))
xText~insertControlCharacter(xTextCursor, -

bsf.getConstant("com.sun.star.text.ControlCharacter", "PARAGRAPH_BREAK"), -
.false)

xTextRange~setString("and a Border distance of 25mm")
::requires UNO.cls -- get UNO support

5.3.4 Example 23 – Convert a sdraw document to jpg

Sdraw documents have like swriter documents a filter function to save the images in
another format. In this example an existing sdraw document is opened and all
XDrawPages are exported to an own *.jpg file.

-- Example 23
-- Open an existing drawpage from the internet and export each page to a *.jpg
/* initialize connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the XContext object
XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the sdraw-file */
-- get the document from the current folder
url = ConvertToURL(directory()"/drawpage01.sxd")
xDrawComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
/* create and set the filter */
-- get GraphicExportFilter from the XMultiComponentFactory
xGraphicExportFilter = xMcf~-
 createInstanceWithContext("com.sun.star.drawing.GraphicExportFilter", xContext)
xExporter = xGraphicExportFilter~XExporter -- get the exporter interface
xFilter = xGraphicExportFilter~XFilter -- get the filter interface
/* create filter properties and filter it*/
filterprops = bsf.createArray(.UNO~propertyValue, 2)
filterprops[1] = .UNO~PropertyValue~new
filterprops[1]~Name = "MediaType"
filterprops[1]~Value = "image/jpeg"
filterprops[2] = .UNO~PropertyValue~new
filterprops[2]~Name = "URL"

OpenOffice.org Automation – Andreas Ahammer Page 61

filterprops[2]~Value = storeurl
/* with the XDrawPagesSupplier we can use other page-methods */
drawPages = xDrawComponent~XDrawPagesSupplier~getDrawPages
count = drawPages~getCount()
filename = directory()"\export" -- base filename for JPEGs to be created
DO i=1 to count -- iterate over pages

SAY "Converting " i "of" count "page(s)..."
xComp = drawPages~getByIndex(i-1)~XComponent --get the page by 0-based index
xExporter~setSourceDocument(xComp)
-- define filename
filterprops[2]~Value = ConvertToURL(filename || i || ".jpg")
xFilter~filter(filterprops) -- now carry out the conversion ("filtering")

END
xDrawComponent~dispose -- close the document
::requires UNO.cls -- get UNO support

5.3.5 Example 24 – Start a blank presentation

Simpress documents are generally sdraw documents with a presentation function.

The interface XPresentationSupplier has the method getPresentation() which
provides the XPresentation interface. Now the presentation can be started with the
default properties.

xPresentation~bsf.invoke("start")

„start“ is a method in OORexx class „Object“, thus using message bsf.invoke() to
dispatch „start“ on the Java side.

-- Example 24
-- start an empty presentation
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxw - file */
url = "private:factory/simpress"
xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
-- need document's factory to be able to insert created objects
xImpressFactory = xImpressComponent~XMultiServiceFactory
/* start the presentation */
xPresentation = xImpressComponent~XPresentationSupplier~getPresentation
-- "start" is a method in ooRexx class "Object", hence using message
-- "bsf.invoke()" to dispatch "start" on the Java side
xPresentation~bsf.invoke("start")
::requires UNO.cls -- get UNO support

5.3.6 Example 25 – Make a short presentation

OpenOffice.org Automation – Andreas Ahammer Page 62

When making a presentation it's important to handle the events of the presentation in the
right way. When should an object appear? What should happen when someone clicks
with the mouse on the object?

If we want the first object appearing directly after starting the presentation, the
properties of the draw page has to be set:

xDrawPage0Props~setPropertyValue("Change", box("int", 2))

In the same way, every object and every slide needs the specific properties. E.g. the
properties of the ellipse on the second slide:

xEllipseProps = shapeEllipse~XPropertySet
xEllipseProps~setPropertyValue("OnClick", -

bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE"))

Figure 22: Example 25 – Make a short presentation, Andreas Ahammer

-- Example 25
-- make a short presentation
-- Retrieve the Desktop object, we need its XComponentLoader interface to load
-- a new document
oDesktop = UNO.createDesktop() -- get the UNO Desktop service object
xComponentLoader = oDesktop~XDesktop~XComponentLoader -- get componentLoader
 -- interface
/* open the blank *.sxi - file */
url = "private:factory/simpress"
xImpressComponent = xComponentLoader~loadComponentFromURL(url, "_blank", 0, -
 .UNO~noProps)
-- need document's factory to be able to insert created objects
xImpressFactory = xImpressComponent~XMultiServiceFactory
/* get draw page by index */
xDrawPagesSupplier = xImpressComponent~XDrawPagesSupplier
xDrawPages = xDrawPagesSupplier~getDrawPages
xDrawPage0 = xDrawPages~getByIndex(0)~XDrawPage
/* set the properties to animate the first object automatically */
xDrawPage0Props = xDrawPage0~XPropertySet
xDrawPage0Props~setPropertyValue("Change", box("int", 2))
xDrawPages~insertNewByIndex(1)
xDrawPage1 = xDrawPages~getByIndex(1)~XDrawPage
/* create a Rectangle and add it to the DrawPage0 */
shapeRectAngle = -

xImpressFactory~createInstance("com.sun.star.drawing.RectangleShape")
shapeRectAngle = shapeRectAngle~XShape
shapeX = 3000
shapeY = 3000
shapeRectAngle~setPosition(.bsf~new("com.sun.star.awt.Point", shapeX, shapeY))
shapeWidth = 10000
shapeHeight = 3000
shapeRectAngle~setSize(.bsf~new("com.sun.star.awt.Size", shapeWidth, shapeHeight))
xDrawPage0~add(shapeRectAngle)
shapeRectAngle~XText~setString("Click anywhere to go on!")
/* create a Rectangle and add it to the DrawPage1 */
shapeEllipse = xImpressFactory~createInstance("com.sun.star.drawing.EllipseShape")
xShapeEllipse = shapeEllipse~XShape

OpenOffice.org Automation – Andreas Ahammer Page 63

shapeX = 3000
shapeY = 3000
xShapeEllipse~setPosition(.bsf~new("com.sun.star.awt.Point", shapeX, shapeY))
shapeWidth = 9000
shapeHeight = 3000
xShapeEllipse~setSize(.bsf~new("com.sun.star.awt.Size", shapeWidth, shapeHeight))
xDrawPage1~add(xShapeEllipse)
xShapeEllipse~XText~setString("Click here to go back!")
/* set the Animation for the Rectangle on the first page */
xRectangleProps = shapeRectAngle~XPropertySet
xRectangleProps~setPropertyValue("Effect", -

bsf.getConstant("com.sun.star.presentation.AnimationEffect", -
"WAVYLINE_FROM_BOTTOM"))

/* set the slide transition effect for the second page */
xSlideProps = xDrawPage1~XPropertySet
xSlideProps~setPropertyValue("Effect", -

bsf.getConstant("com.sun.star.presentation.FadeEffect", "RANDOM"))
xSlideProps~setPropertyValue("Speed", -

bsf.getConstant("com.sun.star.presentation.AnimationSpeed", "MEDIUM"))
/* set the Interaction of the Ellipse on the 2nd Page */
xEllipseProps = shapeEllipse~XPropertySet
xEllipseProps~setPropertyValue("OnClick", -

bsf.getConstant("com.sun.star.presentation.ClickAction", "FIRSTPAGE"))
/* start the presentation */
xPresentation = xImpressComponent~XPresentationSupplier~getPresentation
-- "start" is a method in ooRexx class "Object", hence using message
-- "bsf.invoke()" to dispatch "start" on the Java side
xPresentation~bsf.invoke("start")
::requires UNO.cls -- get UNO support

5.4 Database
„The goal of the OpenOffice.org API database integration is to provide
platform independent databases connectivity for OpenOffice.org API. Well it is
necessary to access database abstraction layers, such as JDBC and ODBC, it is
also desirable to have direct access to arbitrary data sources, if required. ...
The OpenOffice.org API database integration is based on SQL.“ [Open03]

The database access in OpenOffice.org 1.1.4 is available through the menu Extras –
Data Source. Then the dialog Data Sources Administration opens and you can set all
properties of the databases.

OpenOffice.org Automation – Andreas Ahammer Page 64

Figure 23: Data Base Administration, Andreas Ahammer

In OpenOffice.org 2.0 the administrations of databases is an own application.

5.4.1 Example 26 – Read data from an existing Database

OpenOffice.org 1.1.4 (and also OpenOffice.org 2.0) has an existing database called
„bibliography“. In this example a connection to this database is set up and all data are
printed out.

The main procedure is to connect to OpenOffice.org and to the database, create the
interface XRowSet and set the command type and the command of this interface, execute
the command, prepare the XRow interface to access the execution and print the data.

-- Example 26
-- read data from an existing database
/* initialize connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the XContext object
XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory
-- first we create our RowSet object and get its XRowSet interface
oRowSet = xMcf~createInstanceWithContext("com.sun.star.sdbc.RowSet", xContext)
xRowSet = oRowSet~XRowSet
-- set the properties needed to connect to a database
xProp = xRowSet~XPropertySet
-- the DataSourceName can be a data source registered with [PRODUCTNAME],
-- among other possibilities
xProp~setPropertyValue("DataSourceName", "Bibliography")
-- the CommandType must be TABLE, QUERY or COMMAND - here we use COMMAND
xProp~setPropertyValue("CommandType", -
 box("int", bsf.getStaticValue("com.sun.star.sdb.CommandType", "COMMAND")))
-- the Command could be a table or query name or a SQL command, depending on
-- the CommandType
xProp~setPropertyValue("Command", -
 "SELECT IDENTIFIER, AUTHOR FROM biblio ORDER BY IDENTIFIER")
-- if your database requires logon, you can use the properties User and Password
-- xProp~setPropertyValue("User", "username")
-- xProp~setPropertyValue("Password", "password")
xRowSet~execute

OpenOffice.org Automation – Andreas Ahammer Page 65

-- prepare the XRow interface for column access
xRow = oRowSet~XRow
SAY "Identifier | Author"
SAY "-------------------"
DO WHILE xRowSet~next > 0

ident = xRow~getString(1)
author = xRow~getString(2)
say ident || " - " || author

END
::requires UNO.cls -- get UNO support

5.4.2 Example 27 – Handling a MS Access database

Example 27 shows how to get access to an existing MS Access database. At first you
have to set up an ODBC bridge to the file database.mdb which is included at the
examples. How to create an ODBC bridge depends on your operating system. E.g. in the
german version of WindowsXP you have to click „Start – Systemsteuerung –
Verwaltung – Datenquellen(ODBC)“. Then the following dialog opens:

Figure 24: ODBC – Bridge 1, Andreas Ahammer

Choose „Hinzufügen“ and select „Driver do Microsoft Access (*.mdb)“. Then you have
to define the name („database“) and the path of the database.

Figure 25: ODBC – Bridge 2, Andreas Ahammer

OpenOffice.org Automation – Andreas Ahammer Page 66

So the operating system knows where to look if you set up an ODBC – Bridge to
„database“.

-- Example 27
-- connect to an existing MS-Access database
/* initialize connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the XContext object
XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory
/* get the DriverManager */
oDriverManager = xMcf~-

createInstanceWithContext("com.sun.star.sdbc.DriverManager", xContext)
xDriverManager = oDriverManager~XDriverManager
/* define the database - URL */
url = "jdbc:odbc:database"
/* set the properties connection */
props = bsf.createArray(.UNO~PropertyValue, 1)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "JavaDriverClass"
props[1]~Value = "sun.jdbc.odbc.JdbcOdbcDriver"
/* settle up the connection */
xConnection = xDriverManager~getConnectionWithInfo(url, props)
xStatement = xConnection~createStatement
/* show the content of the database */
CALL printtable xStatement
::requires UNO.cls -- get UNO support
-- a function to print the content of the database
::routine printtable
 use arg xStatement

 query = "SELECT number, name FROM members"
 xResult = xStatement~executeQuery(query)
 xRow = xResult~XRow

 DO WHILE xResult~next > 0
 number = xRow~getString(1)
 name = xRow~getString(2)
 SAY number || ". " || name
 END

5.4.3 Example 28 – Handling a MySQL – Database

To use the following example a MySQL database has to run on your localhost, port
3306 with the appropriate settings (database-name = „test“, user = „root“, password =
„“). If you don't have a MySQL database you can easily download and install XAMPP
here: http://www.apachefriends.org. Furthermore you have to install the Java – Class
org.gjt.mm.mysql.Driver which is included in the examples or you can download
here http://dev.mysql.com/downloads/connector/j/3.1.html.

Then you have to create the database. Therefore open your browser and connect to
http://localhost/phpmyadmin/ (this is the interface for phpmyadmin on your localhost).
If the browser can't connect to „localhost“, open the „XAMPP Control Panel“ and start
„Apache“ and „MySQL“.

OpenOffice.org Automation – Andreas Ahammer Page 67

Figure 26: XAMPP Control Panel, Andreas Ahammer

Create a new database with the name „test“:

Figure 27: phpMyAdmin, Andreas Ahammer

Now the database is ready to use.

The correct URL to the database is "jdbc:mysql://localhost:3306/test". The
properties to set are the username "root", the password "" and the driver to connect via
a JDBC bridge "org.gjt.mm.mysql.Driver". Then the interface XDriverManager can
create a connection with the method getConnectionWithInfo().

After connecting the interface XStatement is created. With the method
executeUpdate() data can be changed in the database and with the method
executeQuery() data can be read from the database.

The procedure of the example is to connect to the database, create a table, insert two
rows, print the table, insert another row, print the table again and delete the table. To
make the code easier the routine printtable prints the current table.

OpenOffice.org Automation – Andreas Ahammer Page 68

Figure 28: Example 28 – Handling a MySQL – Database, Andreas Ahammer

-- Example 28
-- use a MySQL-database
/* initialize connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the XContext object
XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory
/* get the DriverManager */
oDriverManager = xMcf~-

createInstanceWithContext("com.sun.star.sdbc.DriverManager", xContext)
xDriverManager = oDriverManager~XDriverManager
/* define the database - URL */
url = "jdbc:mysql://localhost:3306/test"
/* set the properties connection */
props = bsf.createArray(.UNO~PropertyValue, 3)
props[1] = .UNO~PropertyValue~new
props[1]~Name = "user"
props[1]~Value = "root"
props[2] = .UNO~PropertyValue~new
props[2]~Name = "password"
props[2]~Value = ""
props[3] = .UNO~PropertyValue~new
props[3]~Name = "JavaDriverClass"
props[3]~Value = "org.gjt.mm.mysql.Driver"
/* settle up the connection */
xConnection = xDriverManager~getConnectionWithInfo(url, props)
xStatement = xConnection~createStatement
/* create and show the table */
SAY "create table..."
query = "CREATE TABLE testtable (number INTEGER, firstname VARCHAR(30), " -
 "lastname VARCHAR(30), age INTEGER)"
say "insert some data..."
xStatement~executeUpdate(query)
query = "INSERT INTO testtable VALUES (1, 'Andreas', 'Ahammer', 23)"
xStatement~executeUpdate(query)
query = "INSERT INTO testtable VALUES (2, 'Wolfgang', 'Schober', 22)"
xStatement~executeUpdate(query)
SAY "data from 'TestTable'"
CALL printtable xStatement
SAY "insert new data..."
query = "INSERT INTO testtable VALUES (3, 'Roman', 'Dietler', 27)"
xStatement~executeUpdate(query)
say "new data from 'TestTable'"
call printtable xStatement
/* delete table */
query = "DROP TABLE testtable"
xStatement~executeUpdate(query)
SAY "table deleted..."
::requires UNO.cls -- get UNO support

OpenOffice.org Automation – Andreas Ahammer Page 69

-- A function to show the content of the table
::routine printtable
 use arg xStatement

 query = "SELECT number, firstname, lastname, age FROM testtable"
 xResult = xStatement~executeQuery(query)
 xRow = xResult~XRow

 DO WHILE xResult~next > 0
 number = xRow~getString(1)
 firstname = xRow~getString(2)
 lastname = xRow~getString(3)
 age = xRow~getString(4)
 say " " || number || " - " lastname || " " || firstname || ", " || age
 END

/*
 NOTE:
 This example will only work if you have a MySQL database
 running on port 3306 named "Test" with an appropriate setup
 and correct tables! Furthermore the class
 "org.gjt.mm.mysql.Driver" has to be installed!
*/

5.5 Linguistics
„The Linguistic API provides a set of UNO services used for spellchecking,
hyphenation or accessing a thesaurus.“ [Open03]

5.5.1 Example 29 – Dictionary

The last example is a simple dictionary. A user can enter a word and OpenOffice.org
checks if this word is valid or not. If it's not valid, a list of alternatives is given.

At first we have to import the Java class "com.sun.star.lang.Locale"

CALL UNO.loadClass "com.sun.star.lang.Locale"
aLocale = .OOo~Locale~new("en", "US", "")

and check if the word is valid:

isCorrect = xSpellChecker~isValid(aWord, aLocale, .UNO~noProps)

If the word is not correct we can get all alternatives:

xSpellAlternatives = xSpellChecker~spell(aWord, aLocale, .UNO~noProps)

OpenOffice.org Automation – Andreas Ahammer Page 70

Figure 29: Example 29 – Dictionary, Andreas Ahammer

-- Example 29
-- use the SpellChecker to check a word
/* initialize connection to server, get XContext */
xContext = UNO.connect() -- connect to server and retrieve the XContext object
XMcf = xContext~getServiceManager -- retrieve XMultiComponentFactory
SAY "*********************"
SAY "*** Spell Checker ***"
SAY "*********************"
SAY "Please enter a word: "
parse pull aWord -- get word to spell check
SAY
/* create the LinguServiceManager and the SpellChecker */
mxLinguSvcMgrName = xMcf~-
 createInstanceWithContext("com.sun.star.linguistic2.LinguServiceManager", xContext)
xSpellChecker = mxLinguSvcMgrName~XLinguServiceManager~getSpellChecker
/* load the required class "com.sun.star.lang.Locale" and set the language to
 US-english */
CALL UNO.loadClass "com.sun.star.lang.Locale"
aLocale = .UNO~Locale~new("en", "US", "")
/* test the word if it is valid */
isCorrect = xSpellChecker~isValid(aWord, aLocale, .UNO~noProps)
wordCorrect = ""
IF isCorrect = 0 THEN wordCorrect = "NOT "
say "The word '" || aWord || "' is " || wordCorrect || "correct!"
/* if the word is not correct submit all alternatives */
xSpellAlternatives = xSpellChecker~spell(aWord, aLocale, .UNO~noProps)
IF xSpellAlternatives <> .nil THEN
DO

SAY
SAY "Alternatives: "

 DO alternative OVER xSpellAlternatives~getAlternatives
SAY " " || alternative

 END
END
::requires UNO.cls -- get UNO support

Note: If the program always returns the result „true“ (even if the word is definitely
wrong), check your „Language Settings“ of OpenOffice.org. This can be done from
every OpenOffice.org application under „Tools – Options – Language Settings –
Languages“. Then choose as language „English“. Now the SpellChecker should work
correct.

OpenOffice.org Automation – Andreas Ahammer Page 71

6 Conclusion
Automating OpenOffice.org via ObjectRexx is definitely a great possibility to make the
working with OpenOffice.org more efficient. Because ObjectRexx has access to all Java
classes there can be written really useful applications with many functions that without
this technology hardly can be developed.

At the moment (in November 2005) there is an ongoing development of all the required
techniques. Since October 2005 OpenOffice.org is available in the version 2.0.
ObjectRexx was going open source early in the year 2005, so everybody can download
it for free and the community could increase. BSF4Rexx is also available in a new
version and provides a lot of functions specially for OpenOffice.org automation.

As you can see, all technologies are still alive and I think they will become more
important in future.

But there are also a few things which should be enhanced.

At first, it's not easy to install all the required components correct, modify them, set
options and classpathes, so that the automation can work well.

Another disadvantage is that all examples above are a „know how, know where“ - story.
If you read the literature about ObjectRexx, study the object model, know about the
syntax of ObjectRexx and try to create your own examples you will see, that the
examples are not really difficult to understand. But they are difficult to develop, because
you need to know where to get the specific interface, which are the properties of a
service, what's about the class hierarchy and so on. The API of OpenOffice.org is
helpful, no question. But I was not always satisfied about it, and so I think, that's the
main point which should be improved.

Finally I'll say, OpenOffice.org automation is a helpful and interesting topic and with a
little programming experience there could be developed great features.

OpenOffice.org Automation – Andreas Ahammer Page 72

7 List of references

[Augu05] Augustin, Walter: Examples for Open Office Automation
with Scripting Languages (2005), http://wi.wu-
wien.ac.at/Studium/LVA-Unterlagen/rgf/autojava/bsf.ooffice/ ,
retrieved on 2005-11-06

[Apac05] Apache Software Foundation, http://jakarta.apache.org/bsf/,
retrieved on 2005-11-06

[at-mix05] at-mix, http://www.at-mix.de/openoffice_punkt_org.htm,
retrieved on 2005-11-06

[Chay05] Chay, Julian / Rexx Language Assosiation:
http://www.oorexx.org/, retrieved on 2005-11-06

[Flat04] Flatscher, Rony G.: Camouflaging Java as Object REXX, at
http://wi.wu-wien.ac.at/rgf/rexx/orx15/2004_orx15_bsf-orx-
layer.pdf ; 2004,

[Flat05a] Flatscher, Rony G.: Java Automation - Course slides (in
German), at: http://wwwi.wu-wien.ac.at/Studium/LVA-
Unterlagen/rgf/autojava/folien/; 2004; retrieved on2005-11-06

[Flat05b] Flatscher, Rony G.: “Automating OpenOffice.org with OORexx:
OORexx nutshell exmaples for write and calc”, http://wi.wu-
wien.ac.at/rgf/rexx/orx16/2005_orx16_NutShell_OOo.pdf;
retrieved on 2005-11-06

[Flat05c] Flatscher, Rony G.: “Automating OpenOffice.org with OORexx:
architecture, gluing to rexx using BSF4Rexx”, http://wi.wu-
wien.ac.at/rgf/rexx/orx16/2005_orx16_Gluing2ooRexx_OOo.pdf;
retrieved on 2005-11-06

[Hahnek05] Hahnekamp, Rainer: Extending the scripting abilities of
OpenOffice.org with BSF and JSR-223; course paper, Vienna
University of Economics and Business Administration,
Information Systems and Operations (Flatscher, Rony G.);
January, 2005

[IBM05] IBM: IBM Rexx Family Homepage, at:
http://www-306.ibm.com/software/awdtools/rexx; retrieved on
2005-11-06

OpenOffice.org Automation – Andreas Ahammer Page 73

[Mart05] Martin, Dave J.: Rexx Frequently Asked Questions,
http://www.mindspring.com/~dave_martin/RexxFAQ.html,
retrieved on 2005-11-06

[Muel01] Müller, Lutz: Einführung in die Programmiersprache Rexx (in
German), 2001, http://lptp7.gm.fh-
koeln.de/schulung/LUTZ/Rexx12/REXX12.HTM, retrieved on
2005-11-06

[Open03] OpenOffice.org: OpenOffice.org 1.1 - Developer's Guide,
http://api.openoffice.org/DevelopersGuide/DevelopersGuide.html,
retrieved on 2005-11-06

[Open05] OpenOffice.org: http://de.openoffice.org/product/index.html,
retrieved on 2005-11-06

[Pito04] Pitonyak, Andrew: OpenOffice.org Macros Explained (2004)

[RexxLA05] The Rexx Language Association Homepage, at:
http://www.rexxla.org; retrieved on 2005-11-06

[Sun05] Sun Microsystems, Inc., http://java.sun.com/, retr.on 2005-11-06

OpenOffice.org Automation – Andreas Ahammer Page 74

8 Download Links

BSF – Bean Scripting Framework
http://jakarta.apache.org/site/binindex.cgi#bsf

BSF4Rexx – Flatscher, Rony G.: Bean Scripting Framework for Rexx
http://wi.wu-wien.ac.at/rgf/rexx/BSF4Rexx/

J2SE – Sun's Java 2 Standard Edition
http://java.sun.com/j2se/1.5.0/download.html

MySQL – JDBC Driver
http://dev.mysql.com/downloads/connector/j/3.1.html

OORexx – OpenObjectRexx website
http://www.oorexx.com

OOo – OpenOffice.org – Download Central
http://download.openoffice.org

Open Office SDK – OpenOffice.org – Software Development Kit
http://www.openoffice.org/dev_docs/source/sdk/index.html

OOo API – OpenOffice.org application programming interface
http://api.openoffice.org

XAMPP – Apache and MySQL Server
http://www.apachefriends.org

Example scripts from this document and a presentation of this topic:
http://www.wu-wien.ac.at/usr/h02c/h0251406/e-commerce/vk6/

All links have the status of November 2005.

OpenOffice.org Automation – Andreas Ahammer Page 75

9 Index
 database module 10
 Java 7
 Macro Recorder 6
 ObjectRexx 7
 OpenOffice.org Basic 6
 scalc 9
 sdraw 9
 simpress 10
 swriter 9
Apache Software Foundation 10
API 6
Automation 6
Bean Scripting Framework 8, 10
bridge 17
BSF 8
BSF4Rexx 11
BSFEngine 11
BSFManager 11
commercial products 6
Component Context 19
Concepts 17
economical factor 6
end-user tool 5
Examples 25
IBM. 10
Installation Guide 23
Interfaces 21
Java – packages 6
Java API 7
Java class 7
Java UNO 7
JDBC 10
macro 6
Microsoft Office 5
Nutshell-Examples 5
Object Model 18
ObjectRexx 5, 12
ODBC 10
office applications 5
Office Applications 5
OpenOffice.org 5, 9
OpenOffice.org API 20
OpenOffice.org automation 7
OpenOffice.org Basic 6
Operating System 16
overall concept 8
Overall concept 8
Properties 22
scripting 6

OpenOffice.org Automation – Andreas Ahammer Page 76

scripting language 6, 7
Service Manager 18
Services 20
StarOffice 9
Sun 9
Syntax 6, 14
technical requirements 5
Technical Requirements 8
Universal Network Object 8, 17
UNO 8

