
CRX - This Year's Story

Introduction

For those of you who missed a previous symposium and have not read the accounts on the REXXLA
website, here is a quick summary of previous presentations.

Compact REXX is a vehicle for experiments in implementing REXX.
� It is written in Assembler code for DOS because this is coding for fun and I am nostalgic about

the programming methods of decades ago.
� The compiler part of CRX is table driven, using tables generated directly from the Backus-Naur

Format description of REXX syntax in the American National Standard.
� The execution part of CRX interprets "pseudo-code" generated from the user's source program

by the compiler part.
� The pseudo-code is a mixed sequence of operands and operators, where the order (reverse

Polish) determines which operators are applied to which operands.
� Operators are one byte numbers indexing an array of the addresses of the routines which

implement operators.
� Operands are two byte numbers indexing one of possibly several arrays of eight byte values,

these being the values of the constants and variables of the executing program.
� A stack of eight byte values in memory, managed by the software, holds the values for

intermediate results and arguments - Rexx values that do not have associated symbols.
� Some eight byte values will contain short character strings, some will contain numbers in the

hardware (Intel) representation of numbers, and some will contain pointers to long strings.  The
long strings may represent numeric values outside the range containable in eight bytes of binary.

� When necessary, a garbage collector scans for all values in use and copies them so that they are
physically adjacent in memory.  This releases the remaining memory for further allocation (or
for DOS to use when running commands).

� Stemmed variables require an execution time lookup mechanism; an adaptive binary tree of the
tail values is used which keeps recently looked up values near the root of the tree.

� Some operators are implemented using algorithms coded in Rexx, taken from the ANSI standard 
specification.  The algorithms are compiled into a variation of the pseudo-code that has one-byte
operands, and that generated pseudo-code becomes part of the CRX implementation (by link-
edit).       

Execution Speed 

Last year I showed you execution of a million Rexx clauses per second on a 300MegaHertz Pentium
II when running the usual performance benchmark, REXXCPS.

In retrospect I should maybe have said "enough is enough" but I have actually spent a lot of time
trying to improve on that.

I don't know how to improve on the design above in any significant way.  I do know how to move
some of the work in running REXXCPS from execution time to compile time but this would be
contrary to the spirit of the REXXCPS program.  For example REXXCPS contains the clause:

     if substr(1234,1,1)=9    then say 'Failed5'

If it made suitable arrangements about what happened if TRACE was turned on, an implementation
could implement this as doing nothing at all at execution time.  However, that would not be in the



right spirit because REXXCPS intends to measure SUBSTR performance.  As an example of what is
in the right spirit of REXXCPS, I think it is reasonable to move to compile time the check that
ensures the second and third arguments of SUBSTR(V,1,1) are numbers, because REXX programs
often contain constants in these positions.  I think CRX does most of the optimisations that can be
done in one pass and are in the spirit of REXXCPS.

So if there are no design changes that help, and no work that can be done away with, the only
potential for speed-up is in the actual coding of the implementation.

The timings in the reference book for Intel instructions suggest there is potential.  Several
instructions  can be recoded as two instructions that run faster, for instance JCXZ takes 5-8 cycle
times whereas CMP CX followed by JZ can be 2-4 cycles.  Also the reference book says that for
conditional jump instructions the time is one cycle when the jump is not taken, three when it is.  On
this basis, the assembler code would go faster if re-arranged so that the likely path was the fall-
through path, and the unlikely path was the jump. So I re-programmed along these lines, even though
it made the coding less readable in places.

 cmp dh,al cmp dh,al MyEq:inc cx
 jne MyNe je MyEq jmp MyLoop
 inc cx MyLoop:
MyNe:

The second and third columns here achieve the function of the first, with only the second column
being executed in the normal case and the second and third columns executed in the rare case.  The
code of the third column is entered and left by a jump so it can be put somewhere away from the
main line.  

Variations like this sometimes seemed to improve speed and sometimes made it worse.  The
granularity of timings on DOS is coarse, with 16 clock ticks per second, but even with measurements
of sufficient time to discount that factor there were apparently random variations in speed.  

You might want to ponder on the cause of that, before reading on.

I guessed that the speed of code on a Pentium II is sensitive to the alignment of instructions, e.g.
whether they start on odd or even memory addresses.  So a change made in the coding could affect
the speed of the program simply be changing the alignment of some unrelated part of the coding. 
You can imagine how difficult this would make improving the coding by trial and error.

At this point it might have been wise to admit defeat, but I decided that more science was called for. 
Instead of laboriously creating and measuring variations by hand, perhaps a utility written in Rexx
could be used to create and run them.  The utility could not be expected to understand Assembler
source which used macros so the first requirement was a version of the program in the simplest style
of Assembler coding.  

The utility had to construct a single assembler source program out of the nine assemblies that
comprise CRX.   (The implementation is made in parts and link-edited because otherwise the listing
of the assembler output becomes too large for my DOS editors to handle.)  The utility did this by
scanning the multiple assembler listings and extracting what was necessary for a single assembly
containing the same instructions.  There are some difficulties in this because assembler listings were
not designed to be read by a computer and have ambiguities.  Also, in theory, it is impossible to tell
without execution what parts of a program are data and what parts executable.  However, seven
hundred lines of Rexx can do a reasonable job of understanding sensible programs.
  
The next step was to profile the execution of REXXCPS by CRX.  Profiling consists of counting how
often different pieces of the subject, here CRX, are executed when it is processing the test case, here
REXXCPS.  Many language tools provide a profiling feature but they tend to produce nicely



coloured histograms and digraphs from which you draw conclusions, rather than sets of numbers
ready for computing from.  Here the profiling problem was to annotate, with counters of execution
frequency, the single complete-CRX assembly.  The annotation was to be at the most detailed level,
with a counter for each little bit of code isolated by a label or a jump instruction.  I will call these
"snippets" and there are some 2800 of them in CRX.

High-tech profilers work by overwriting the instructions of the subject with instructions that do a
hardware interrupt.  I chose the simpler approach of having the Rexx utility insert a call to a counting
routine into every snippet.  This is imperfect because it results in a larger program which in turn
means there will be more garbage collections when the test case is run.  However, over-counting of
garbage collection was not something that mattered.

By combining the information gathered on the frequency of execution of each snippet with the
number of cycles needed for execution of the snippet  (as given by the hardware reference books and
put on the listing by the assembler) we can arrive at a figure for the total number of hardware cycles
needed to compile and run REXXCPS.  This comes out at 899382865 cycles for 3 million Rexx
clauses.  Given a 300MHz machine this translates to 3.0 seconds.  That is a reasonable match to a
better-than-one megaclause per second rating from REXXCPS because it applies to all the processing
for REXXCPS, including the compilation, not just the part of itself that REXXCPS times.

The profile of any program will be skewed - not all instructions in it will be executed with the same
frequency.  An interpreter of Rexx, particularly one like CRX which has table-driven parts, will be
highly skewed.  In fact, 90 percent of the execution is in less than 10 percent of the executable code. 
Here are the top ranked snippets that account for 24 percent of execution time.

1. Moving bits of a tailed reference like acompound.key1.loop into position to be looked up.
2. Comparing the tail on a tailed reference with other tails that have been used with that stem.
3. Deciding whether the next thing in the pseudo-code is an operator or an operand.
4. Making a call to code that implements an operator.
5. Dividing a value that is held in binary by ten.  This is needed when the value is converted to a

character string.
6. Loading hardware registers, with pointers to a short string Rexx value.
7. Testing whether the argument to something like the SAY instruction is already a string, or whether

it needs conversion.
8. The loop that does UPPER for the PARSE instruction.
9. Testing whether an operand is a variable or a constant.  (Hence which array does the value come

from.)
10. Multiply by ten - used in character to binary conversion.
11. Move 8 bytes from somewhere to the software managed stack.
12. Scan the digits of a number that is in character string form.
13. Comparison of string values.
14. Move the right hand side part of a concatenation or abuttal.
15. Load the hardware registers with a binary value from the software managed stack. 

There is nothing surprising there, except perhaps how high referencing a tailed variable comes in the
list. Programming style may be relevant to this.  How do you write an array of structures in Rexx?
Consider something which in the "C" language would be:

 struct Box { Height int; Length int; Depth int;} Boxes[99]

The Rexx equivalent will be more powerful because names as well as numbers can be used to
identify individual boxes, but the "C" syntax does better at indicating that Height, Length and Depth
are associated.  Some Rexx programmers would use stemmed variables with two parts to the tail:

/* Set up box J */  
Box.J.0Height = 22
Box.J.0Length = 33
Box.J.0Depth = 44



The 0 in these references is just an idiom, to prevent Height, Length and Depth being confused with
variables of those spellings.   Any digit would serve as well as 0.

Alternatively, different stems could be used:

BoxHeight.J = 22
BoxLength.J = 33
BoxDepth.J = 44

The latter loses all connection between Height, Length and Depth, except for some artificial partial
match in the names of the stems.  However, it does change from references with two parts in the tail
to references with just one part.

As you know, a reference like AAA.BBB.CCC does not mean look for things in AAA which have a
first tail part matching BBB and then look in that set of things for something with a tail matching
CCC.   What it does mean is look in AAA for something with a tail of value BBB'.'CCC.  The two
concatenations in constructing BBB'.'CCC are what makes this reference relatively expensive, since
string moves are expensive under the Intel architecture.  In theory, programmers striving for speed
might do best to avoid tails with more than one component, although I have no figures to prove that.

Let us now return to the more general problem of arranging the 300 or so performance relevant
snippets into a program best arranged to get speed out of the Pentium hardware.  The speed might
come from putting them on particular alignments, or in the pattern of which ones have a fall through
at the bottom into executing others.  How can we get a good solution when the decisions are inter-
related, we don't know which are important, and there are too many possibilities to try all the
combinations?

Problems like this are not unusual.  The "Travelling Salesman" problem, of visiting a set of cities
with the least travelling, is an example.  So are many problems of packing and scheduling. An
approach that has given good results is to generate solutions randomly and look for features that
characterise the high performers amongst those solutions.  Then those features can be fixed when
further solutions are evaluated.

So we need to generate a feasible random arrangement of the snippets, assemble the snippets in that
arrangement, use the result to run REXXCPS, record the arrangement and its performance, then try
again.  Rexx is ideal for this sort of combination of computing and driving other tools.

Well, I did get this automated trial and error working, but I still could not recognise a pattern in what
improved speed and what did not.   Belatedly, I sought some help from the Pentium II technical
specifications.  The light dawned.  The information in the Technical Reference that I had been using, 
and the speed data printed in the assembler listings, was about the Intel engines of the xx86 and
Pentium time.  The Pentium Pro and successors have a different approach to instruction scheduling. 
In particular, they predict that backward branches will be taken and forward branches will not.  In the
example above, if the code for the rare case is positioned earlier in the program than the code for the
usual case then a Pentium II will predict the rare case as happening each time, and will take of the
order of 10 cycles to recover when it does not.     

After gathering information about the frequencies of branches between the snippets (which requires a
bit more data than just the frequency of execution of the snippets themselves), the utility was made to
create an arrangement of snippets matched to the Pentium II rules.  This produced the best speed yet
on REXXCPS.   Experimenting with alignment did not improve speed further.  This is where it is
now:

(Demo 1.17 MegaClause per Second)

So that is the Speed story - lots of problem solving interest for me, a bit of technique that could
improve any assembler program for the current Intel engines, but only 10% speed improvement.  I



suspect CRX is near the limit for the combination of Rexx, Intel architecture, and the "spirit of
REXXCPS".  

Just one more comment on speed: the people who design engines like the Pentium and the Athlon try
hard to discourage us from putting unpredictable branches in programs.  The Athlon keeps a cache
(with 2048 entries) of where branches went when they we last executed but this no better than a static
guess for coping with a conditional branch that (pseudo-randomly) branches about half the time and
falls through about half the time.  A wrongly predicted branch takes ten times as long as a typical
instruction so contortions to avoid a branch can pay.  Consider:

   if MyFlag then Alpha = Constant1; else Alpha = Constant2

The straightforward assembler rendition of this is:

  bt Flags,MyFlag
  jnc ToElse
  mov Alpha,Constant1
  jmp AfterElse
ToElse:mov Alpha,Constant2
AfterElse:         

Many programmers would write this, which saves code size and probably doesn't cost speed on most
architectures. 

  mov Alpha,Constant1
  bt Flags,MyFlag
  jc AfterElse
  mov Alpha,Constant2
AfterElse:

The interesting question is how this compares for speed with the branchless version:

    xor Alpha,Alpha;  Clear a register
  bt  Flags,MyFlag; Set Carry
  sbb Alpha,Alpha;  Subtract with Borrow - result zero or all ones.
  and Alpha,Constant1-Constant2; Zero or the constant difference.
  add Alpha,Constant2; 

Pseudo-Code Size

There is only one noteworthy change to the pseudo-code that CRX compiles.  The usual format has
two byte operands and one byte operands interspersed, so AA = BB would become two bytes to
reference BB (and load its value) followed by an assign operator and the reference for AA.  However,
since a Rexx program with more than 8000 variables or more than 8000 constants would be a rare
beast (and probably ought to be rewritten in separate external files) the two bytes of a reference only
need 13 bits to index the relevant array.  If we take the even/oddness bit to distinguish
operators/references and another bit for constant/variable we still have a bit spare.  If we take this bit
to mean "store to this reference" then AA = BB can be rendered as just two bytes for BB and two
bytes for AA, with the assignment operator omitted.         

External Rexx Procedures

Rexx allows for a program that comes as one source file to make use of a procedure that is the
content of a different source file.  Early Rexx processors were "pure" interpreters which necessarily
fetched the source file and syntax checked it each time the external procedure was invoked by the
main program.

More recent processors, those that produce pseudo-code, have usually been designed to retain the
pseudo-code so that it does not have to be regenerated each time the external procedure is called. 



Sometimes it is held appended to the source, in the same file.  For Warp, it is held in the "attributes"
associated with the file.  (Sadly, the Warp designers did not anticipate the attributes being used for
something large so a size restriction cuts in at around the size of a program with 500 Rexx
statements, with the unfortunate affect that programs which could most benefit from pseudo-code
retention cannot use it.)

Implementers have expressed interest in allowing the pseudo-code to be retained in memory and the
Standards Committee suggested an option RELOAD/NORELOAD to control this.   

The two approaches could be used together - having the pseudo-code with the source is the quickest
way of running the procedure in the first instance (which would be particularly relevant to transaction
processing response) while having it retained in memory would be fastest for subsequent executions.

How much information to keep in the pseudo-code and how much to get on demand (from the
original source file) when needed, to provide a TRACE for example, is a matter of balance in the
design. CRX is at the low end in terms of what it keeps in the pseudo-code.  So even though a DOS
system has only about 600K of memory addressable, I thought having NORELOAD always enabled
might be effective.

To explain my example for this, I need to go back to the time of IBM's Systems Application
Architecture (SAA).  To ensure the various implementations of Rexx gave the same results, they
were all required to run the same test suite.  It was known as the Vienna test suite because it was
written there.  One small part of the Vienna suite consists of a file where each line gives the expected
result for some arithmetic operation.

{ Show the file}

During the development of the Rexx standard, IBM contributed this file to help debug the standard. 
The committee needed it because they had written an algorithm in Rexx defining the Rexx arithmetic
in terms of the simpler operations of integer addition and subtraction.   Also they wrote the
algorithms for the builtin functions in terms of simpler Rexx.  Let us call these programs ARITHOP
and ANSIBIFS.

I am now going to show you the execution of a program that reads lines from the Vienna file, feeds
the values from a line as arguments to a call of ARITHOP, and checks the answer for that line.  This
is Classic Rexx on Warp.  In normal testing the answers would go to a log file but here they are
directed at the screen.  You will see that the first few lines are processed quickly, but then a slower
pace sets in.

{ Run example }

What is happening is that the later lines are testing the power operator,  '**'.  The right hand side
argument to this operator has to be a whole number.   To do this DATATYPE(RHS,'W') test, the
ANSIBIFS code is called as an external routine.  Let's look at the sizes of the code involved.

{DIR ...}

We see that ARITHOP has it's compiled pseudo-code in it's attributes, but ANSIBIFS doesn't because
it is too big for the WARP limit on attributes.  That means ANSIBIFS has to be recompiled from
source each time it is called, resulting in slowness.

Reprogramming a big Classic Rexx program into multiple smaller external routines is not always
easy because shared values have to be passed as arguments.  And in this particular example it would
defeat the purpose of testing ANSIBIFS in the form it was written.    

Going the other way and combining the test, ARITHOP, and ANSIBIFS into one giant program
would actually make for faster execution since all the compiling effort would happen just once at the
beginning.  This requires some recoding, for example because of name clashes and because EXIT



means RETURN in an external routine and termination in an internal routine.  I have made it work
just to demonstrate:   

{ Show that }

However, we certainly don't want to encourage monolithic programs - easy reusability is lost, editing
can get unresponsive, there would be a demand for INCLUDE, and so on.  Ideally, what we want is
to make external routine calls to be as quick as internal routine calls. 
     
Here is the case with the test harness, ARITHOP and ANSIBIFS, run by CRX.  The arithmetic is not
DIGITS 9 so it doesn't take advantage of the CRX binary arithmetic, but it does avoid recompilations
by keeping compilation results in memory.  You will see one pause, on the first of the power
operations, which is when ANSIBIFS is compiled for the only time.  This is DOS running under
WARP.

{ Show that }
  
Is the memory price for this speed to high?

There are design choices about what is held for a program, after compilation.  The source is needed,
e.g. for the SOURCELINE builtin function, but it can be kept on the disk and fetched as necessary in
execution.  The pseudo-code needs to be in memory when it is being run.  The list of symbols used in
the program has to be in memory.  So do the values of constants.  The symbol lookup information,
which quickly converts from a symbol to it's number in the compact numbering of symbols that
pseudo-code uses, is optional.  The information can be reconstructed from the list of symbols.  If we
assume that things which need the information (like INTERPRET and the VALUE builtin) are rare,
then the information could be remade on demand.  The following statistics are for when the
information is retained, and for when it is not.

Source-
Bytes

Lines Pcode-
bytes

Symbol-
bytes

Variables&
Constants

Harness 2370 72 244 395 65
 
ArithOp 20933 623 3008 1116 169

AnsiBifs 104657 2891 15990 16077 1003

Overall, 13 bytes per line for the executables of a routine to be
retained in memory.

(10.3 without quick lookup of variables and constants)  

This is not a high price.

So compiling external routines the first time they are used by a program, and keeping the results in
memory, will make subsequent calls to the external almost as fast as a call to an internal routine.
We get the modularity and ease-of-use of external routines without undue performance pain.
If this works well on DOS it should work even better on systems with more addressable memory.
             

Mechanisms for TRACE

We all know how useful TRACE is, and it is useful that it monitors the execution at a detailed level. 
In the case of TRACE 'I', it monitors after every variable or constant is accessed, after every
operation, and at the beginning of every clause.   If tracing was implemented simply, by seeing if



trace was active every time execution reached one of these places, it would be something of an
unnecessary overhead since most programs, in most of their executions, are not being traced at all.

I have suggested before that the way to combine the trace facility with efficiency in the usual case
was to have two interpreters in the implementation.



Psuedo code

High speed interpreter

Common

General interpreter

One of the interpreters does no tests for trace, except that when a TRACE statement or TRACE
builtin function activates tracing it hands control to the other interpreter.  The latter does extra testing
while executing the pseudo-code, to produce the trace as necessary.

This two-interpreters approach works, but it has some limitations.  Consider this clause from the
REXXCPS program:

 avar.=1.0''loop
  
The expression here has the same value as 1.0||  loop  where ||  is the abuttal operator.  I suspect
the reason that abuttal was not used was some concern about the portability of the vertical bar
symbol.  This is certainly a valid concern; there are three glyphs that look something like a vertical
bar in the ASCII 8-bit character set and it is not always obvious from a keyboard which key will
produce what,  particular if the input is to be in EBCDIC and converted.  In fact, the "Personal
REXX" product I use today requires a different character than the Warp REXX does, for the vertical
bar.

This raises an interesting language question - why does the language have an abuttal operator at all? 
We know we can do "concatenation-with-blank" by putting operands in succession, as with ABC
DEF or (Expression1) (Expression2).   And we can do many cases of abuttal, which is
"concatenation-without-blank" by closing the gap, as with ABC'abc'  or
(Expression1)(Expression2) .   So it would be reasonable to do abuttal of a couple of
variables with the ABC''DEF  idiom, avoiding any abuttal operator.

One slim argument against avoiding ||  is that 1.0''loop  and 1.0||loop  are not the same when
traced.

2 *-* x = 1.0''loop

>L> 1.0
>L>

>O> 1.0
>L> LOOP
>O> 1.0LOOP

3 *-* x = 1.0||loop

>L> 1.0
>L> LOOP
>O> 1.0LOOP

Returning to the implementation challenge, that means that the pseudo-code will have to reflect what
was written -  the compiler cannot compile 1.0''loop  as if the slightly faster 1.0||loop  had
been written.  This particular case won't really be significant for speed but there are more common
constructs where the potential to trace impedes code improvement.  For example:



ABC = SomeExpression
If ABC > 0 then ......

To support tracing, the pseudo-code must contain the store to ABC and the load from ABC.  But for
tracing, the load would be unnecessary because the value of ABC is still handy on the stack - it was
just stored from there.

Suppose that instead of a design with two interpreters and one pseudo-code we have a design with
one interpreter and two lots of pseudo-code:

Interpreter Extra

Pseudo code non-trace Pseudo code with extras

The first lot of pseudo-code will be optimized without concern for tracing.  The second lot will have
extra code compiled into it, with operation codes specific to tracing, wherever there is a need to
monitor anything.  Note that the interpreter has to support these extra opcodes, but the
implementation of the non-trace opcodes does no testing for trace.

This approach removes the constraints noted above - 1.0||loop  can be compiled into the fast lot
of pseudo-code and 1.0''loop  compiled into the trace-supportive pseudo-code.

This is not all as simple as it may sound.  There is a challenge for the implementor in arranging the
the changes from executing one lot of pseudo-code to the other, particularly as the TRACE builtin
function can turn on tracing partway through an expression evaluation.  Also the value of a label is
moot, since a particular label in the source program will correspond to two different locations in
pseudo-code, one in each lot of pseudo-code.   When a CALL is executed, what location should be
used as the return link, given that the trace mode may have changed by the time the RETURN is
made?  However, there are solutions, provided that we don't care that the tracing pseudo-code
executes slowly.

This design allows for:

-  More freedom in characteristics of the fast pseudo-code. 

- Full TRACE functionality.

- Retention of the simple Rexx model of program development,  Edit-Run.

The price of the speed would be high if it meant that the size of the pseudo-code was more than
double that of a simpler design.  However, since we don't much care about speed of execution when
tracing is turned on, there is no need to ever materialize the trace-supporting pseudo-code for the
whole program.  Pseudo-code can be compiled for a particular clause immediately before the clause
is executed and discarded immediately after.



Interpreter Extra

Pseudo code non-trace Current clause pseudo code

I will demo this with REXXCPS, as usual, firstly without trace.  The version of CRX used is a touch
slower than some because it hasn't been through the profiling I described earlier and it is running in
the "DOS box" of WARP but it should do a MegaClause.

{Demo}

Now I edit a trace statement in, towards the end of REXXCPS.

{Demo}

The clauses-per-second figure is the same, or slightly altered by random effects, since that was
executed by the same pseudo-code and same interpreter parts as before.  However, when trace came
on these clauses were run by doing compile-then-execute on a clause by clause basis.

There are some features of Rexx, like the INTERPRET instruction, which constrain the design of
implementations of Rexx and hence cost all users something, whether or not they use the feature in
their programs.  What I have shown here is that TRACE is not like that - it need not cost anything
except if and when it is used.

To end with, here is some untested speculation.  If two ways of encoding REXX are better than one,
would three be better than two?  The notion with two is that one can be the basis and the other
produced on the fly when more complicated situations arise.  The reflection of this is to use one as a
basis and the other when simpler and more favourable conditions arise.  Taken to the extreme, this is
what language processor people call "jitting" - the production of machine code Just_In_Time during
execution when the dynamic conditions make it valuable.  Perhaps the most efficient structure for
Rexx is a basis pseudo-code, with another pseudo-code to be generated and run when tracing is
active, and jitting of simple pieces of the program that can be done in binary and reasonably rendered
as machine code.      
             

Summary

Diminishing returns on speed improvements.

NORELOAD option to keep external procedures in main memory works well.

A second lot of pseudo-code, made clause by clause, allows trade between slowness with tracing
turned on and quickness with tracing turned off.


