
A I&xx-based Stock Exchange Real-time
Client/Server Environment for--Research, Educa-
tional and Public Relations Purposes: Implemen-

tation and Usage Issues

Martin P. Misseyer
Lou W. M. Guse

Armoud W. Morsink
Vrije Universiteit Amsterdam

Pages 292-322

.

Proceedings of the 6th International Rexx Symposium 292

A REXX-based Stock Exchange Real-time Client/Server
Environment for Research, Educational and Public Relations Purposes:

Implementation and Usage issues

Martin P. Misseyer, LLNI W.M. Giise, Arnoud W. Morsink

Vrije Universiteit
Faculty of Economic Sciences, Business Administration and Econometrics

Department of Information Systems

Amsterdam, April 1995

Abstract

For many years now the Faculty of Economic Sciences, Business Administration and Economics of the Vrije Universiteit in
Amsterdam propagates to impart students of economics scientific ‘real market’ skills aud experience in, for example, portfolio
management. Aside from the risk neither the faculty nor most of the students have sufficient means to practice in portfolio
mauagement. In the early 1980s the idea evolved at the faculty to develop and use a portfolio management simulation. The
Am&&am Stock Exchange (ASE) granted the faculty in 1983 a free of charge data link with its admin&rative clearing information
system. The data link provided the faculty with real-time data including stocks traded (time, price and volume), exchange news,
stock splits and many more. At the time the technology used was relatively simple: the data link consisted of a 1200 bps modem
connection using the X-modem protocol to receive data. The received data were put in flat files and were in turn read by a

. small, written in C, in-house developed portfolio management simulation system named TRANSPAS.

In 1990s it became inevitable for ASE to acquire a modern trading system as more and more trade leaked to more sophisticated
foreign exchanges (London, Paris, and Frankfurt). ASE developed a new trade system, entailing major operational and technical
changes. In September 1994 a new, fully automated, trade system became operational for complete administration of ah ASE
transactions (to be) made. Nowadays at the ASE tens of millions of stocks, bonds, futures change hands every day.
The major changes were twofold. First the trade itself was re-engineered by ASE, however this is not discussed in this paper.
Secondly, a tremendous change at the technology level was unavoidable. ASE moved from simple analogue asynschronous
communication to X.25based digital synchronous communication (SDLC), anticipating on the need for both much more capacity -
as data streams increase (re-engineering!) and for full reliable data-link monitoring. Therefore, the faculty was faced with the
fact that TRANSPAS as well as its data link became outdated, and implied that the whole system had to be rebuilt.

In 1993 the first author of this paper headed the project team, a composition of colleagues (researchers, graduates, automation
staff) and enthusiastic undergr&ates, to rebuild TRANSPAS and its ASE data link. The fnst step the project team took, before
setting up several projects, was re-ex amining the faculty goal. After thorough research, two goals were aimed at. First, the
basis of the integrated environment should be based on state-of-the-art relational database technology (the database project
was named after the database to be developed: Bet&&se) in which all the raw ASE data received would be stored real-time/on-line
for a long period of time, preferably three years or more. Secondly, the project team distinguished three major application
areas for the database: ’ research, education and public relations. For each of these areas a specific range of application programs

2$3

must be developed. Obviously, one of the core application programs is the portfolio management simulation system TRANSPAS,
which was renamed into: VUPOS. It became clear that VUPOS could be used in all three areas defmed.

Concurrently with the ASE new trade system, the faculty-built REXX-based Client/Server (C/S) became operational. Though
already halfway implementation the faculty was informed by the Computer Services Center about its new strategy: the IBM - .
S/390 host facility, the VM Server in the REXX C/S environment (and the basis for both BeursBase and several applications
in&ding WPOS) would be stopped at the end of 1995. It would be replaced by a AIX cluster of 4 very large 590 RS/6000

- mid 1994. When the project team was acquainted with the news immediate action was taken. In contrast with the SQL/DS
version installed DB2/6000 (AIX) supports full C/S. For several reasons the project team decided to develop in parallel a second,
REXX-based C/S enviromnent using the AlX host as Server. This ‘new’ C/S enviromnent - referred to as the AIX C/S environment -
went in operation last January 1995. As the ‘old VM C/S environment was primarily based on REXX, porting the applications
to anew’ AIX C/S environment was relatively simple. Both VM C/S and AIX C/S enviromnems are now fully operational
and perform as was planned for, having many similar as well as diiguishmg characteristics. The portfolio management Simulation
(VUPOS) for the VM C/S environment is written in CSP, aud is already used by hundreds of students. Since the AIX C/S
does support full C/S the project team was able to develop VUPOS in VX-REXX. Recently the development of this version
of VUPOS has entered its fmal stage. Qther applications in VX-REXX, APL/2, VisualGen and VisualAge under construction,
range from an import/export facilities to fundamental and technical analysis, and are primarily developed for the ALX C/S
environment. The first quarter of 1995 will be used for large scale tests of the system.

This paper presents the design, development, and implementation of these C/S systems from both developer and user views
and from both technical and non-technical points of view.

1 General introduction

1.1 Students, portfolio management and TRANSPAS

For many years now the Faculty of Economic Sciences, Business Adminisbation aud Economics (FEWEC) of the Vrije Universiteit
in Amsterdam (The Netherlands) propagates to impart students of economics scientific ‘real market’ skills and experience in,
for example, portfolio management. Aside from the risk neither FEWEC nor most of the students have sufficient means to
practice in portfolio management. In the early 1980s the idea evolved at FEWEC to develop and use a portfolio management
simulation. The Amsterdam Stock Exchange (ASE) granted FEWEC in 1981 a free of charge data link with its administrative
clearing information system. The data link provided FEWEC with real-time data in&ding stocks traded (time, price aud volume),
exchange news, stock splits aud many more. At the time the technology used was relatively simple: the data link consisted

- ..of a 1200 bps modem connection using the X-modem protocol to receive data. The received data were put in flat files and
were in turn mad by a small written in C, in-house developed portfolio management simulation system named TRANSPAS.

1.2 Developments at the Amsterdam Stock Exchange

Early in the 90s it became inevitable for ASE to acquire a modem trading system as more and more trade leaked to more sophisticated
foreign exchanges (London, Paris, and Frankfurt). ASE developed a new trade system, entailing major operational and technical
changes. In September 1994 a new, fully automated, trade system became operational for complete administration of all ASE
transactions (to be) made. Nowadays at the ASE tens of millions of stocks, bonds, futures change hands every day.

.

2

The major changes were twofold. First the trade itself was re-engineered by ASE, however this is not discussed in this paper.
Secondly, a tremendous change at the technology level was unavoidable. ASE moved from simple analogue asynschronous
communication to X.25-based digital synchronous communication (SDLC), anticipating on the need for both much more capacity
as data streams increase (re-engineering!) and for full reliable data link monitoring. aerefore, FEWEC was faced with the
fact that TRANSPAS as well as its data link became outdated, and implied that the whole system had to be rebuilt.

1.3 Rebuilding TRANSPAS: a project plan

In 1993 the first author of this paper headed the project team, a composition of colleagues (researchers, graduates, automation
staff) and enthusiastic undergraduates, to rebuild TRANSPAS and its ASE data link. ‘Ihe first step the project team took, before
setting up several projects, was re-examining FEWECs goal. After thorough research, two goals were aimed at. First, the basis
of the integrated environment should be based on state-of-the-art relational database technology (the database project was
named alter the database to be developed: BeursBase) in which all the raw ASE data received would be stored real-time/on-line
for a long period of time, preferably three years or more. Secondly, the project team distinguished three major application
areas for the database: research education and public relations, For each of these areas a specific range of application programs
must be developed. Obviously, one of the core application programs is the portfolio mauagement simulation system TRANSPAS,
which was renamed into Vrije Universiteit Portfolio Simulation, in short VUPOS. It became clear that WPOS could be used
in all three areas defined.

The VUPOSlBeursBase project defined the following phases:
lo Provide a strategy plan, including a re-examination of FEWECs goal(s);
2” Evaluate possible solutions, alternatives for the new system;
3” Design a new organizational setting;
4” Design several subprojects in which the system should be developed aud implemented;
5” Provide a maintenance structure based on the strategy plan, including a costs/benefits analysis.

Phases l”, 2” and 5” lie beyond the scope of this paper, except for a reexamination of FEWECs goal (phase lo partially) these
phases are not discussed. This paragraph elaborates on the subprojects defmed (phase 3’). Phase 4”, the design of several subprojects
is diiussed in the next paragraph. Before continuing with the subsequent section it has to be said that the focal point of this
paper is an exemplification and a discussion of the implementation and usage aspects of the REXX-based Client/Server environment
developed at FEWEC.

1.4 The strategy plan: a re-examination of FEWECs goal

-. In the early 1980s TRANSPAS was set up as a kind of ‘test’ or ‘toy’ system primarily by students, two lecturers and a system
administrator. At the time focus was purely on practice: how can we implement a portfolio simulation system for usage in
education? A re-examination of this simple FEWEC goal is shown in figure 1.

At best stock data provided by Beursdata should be stored in a underlying relational database (BeursBase). Then three user
application amas can be diied: research, education and public relations. The research and education user applications
areas seem more likely than the public relations application area. True, an university position sterns from the quality of research
and education. The public relations more or less benefit from these facts. At this moment universities in the Netherlands are
faced with a signilicantly declining number of students, partially because of the aging population and partly because of a de&ring

.

3

willingness to study, and therefore competition is high. This is where the public relations part plays a role: FEWEC needs ways
to attract potential students. The public relations user application area is diiguished for this goal. FEWEC members, lecturers,

researchers and student can aid in application development for this purpose. Other public relations activities are for example
finance , i.e. stock and bond investment competitions, school lectures, educational seminars, and media publicity.

D&Cipht?S . User areas

igure 1 The application areas for real-time stock data in a scientific environment.

The fourth application area is the one for system and maintenance. In this area users, programs and database control rather
than stock data are the issue of concern. Finally, each of the user application areas distiuguished can be viewed from a variety
of economic disciilines. The most relevant disciilines are among Finance, Information Systems and Information Technology,

_ .,Econometrics, Financial Accounting and Operations Research or Management Science.

The information above can be concentrated into a general purpose framework, a matrix structure in which the user application
areas are defined as column and the economic disciilines as rows. For each matrix cell one or more specific users application
programs can be developed. Or, if application programs are already available abundantly and are easily adapted in current
enviromnent, they should be used instead Fmthermore, some application programs if generally developed can be used in more
than one area distinguished, and/or in more thau one discipline. In that case one can look for or develop application programs
for more widespread usage. In table 1, some examples are provided.

.

4

The fourth application area forms an exception to the framework. This is primary the area of the Information Systems and
Computer Science disciplines and involves more fundamental research on information systems, decision support systems,
databases, (tele)communication and networking.

EconomeIncs

Financial accounting

I applica

- Portfolm management and theory,
- Theory on market effi&ncy,
- International stock markets;
- Development ofperformance indicators

Analysis of stock market and tinancial mvesbnent
data

Appl~tion of IS and DSS

-Design DSS, ES, KNN systems
Database oonoepta and theory
System and applicatio,, development oonceptp-

(ClimffSaver, Object Orientation)
Appbcatmn of IS and DSS
Human computer interface

Statitioal (exploratory) data analyses
Longitudinal and time wows analysis
Application of IS and DSS
Design of smmbation models

Analym of perfofnance indicators
- Am&.ls of stock and equity issues
- Application of IS and DSS

- Gemml market theones
- Impact stock market on economy
- Application of IS and DSS

km program development.

Pmtf‘Alo man.agement shnulation;
Data analysis;
AppIicahon of IS and DSS,
Pra,3ical classes;
worknhops;

-seminars;

- Data analysis,
- Applioahon of IS and DSS,
- Pmctlcd chsm,
-work&hops,

- Daba analysis;
- AppIication of IS and DSS,
- Practical classes;
-workshops;

swmulan;

IMa malyals,
Application of IS and DSS,
FTwtical clssses;

-Workshops;
semmars;

Data analysis;
Applioahon oflS and DSS;
Plaotical cIasses,
work&ops,

-seminars.

1.5 Criteria for the C/S environment development: in search for processing power

TherequirementsforaBeursBaseandVUPOSplatformneeded
to be specified. Several criteria were defined to determine
the amount of processing and database power necessary for
BeursBase, VUPOS and other application usage. The project
team came up with the following criteria: -.

0 Number of users in every area distinguished;
0 Number of applications in every area;
0 Type of database processing;
0. In-house experience with systems;
El Costs/benefits;
0 Designing for flexible systems in terms of portability,

efficiency and effectiveness;

. Figure 2 The organizations involved.

5

z--9 7

Having limited resources available, added to the fact that use of SARAs, the academic computer center of the two universities
in Amsterdam, was aheady paid for up to 1996, the choice was simple. As the department of Information Systems was already
using SARAs fa&ies, the cooperation was intensified. ‘Ihe organizational setting is shown in figure 2. Beursdata, ASEs data
vendor provides FEWEC since 198 1 with real-time stock exchange data. In 1993 the &mmunication link was upgraded to
a X.25 structure. FEWEC, with approximately 3 100 students the largest of 15 faculties of the Vrije Universiteit, transforms
the real-time ASE data into SQL data-format aud puts it into BeursBase (SARA). Ideally, FEWEC members, lectures, researchers,
ass&ants and students should be able to use the data for many different purposes. Data should be available both directly by

- extracting it (by query) and indirectly by using application programs.

1.6 SARA the computer services center

Since 1987 SARA supports au S/370 facility. During the years it was first expanded from a 3090-150 to a 3090-180 and
in 1990 it was replaced by a huge 3090-600VF. The 6 processors were used to run VM, MVS and AIX concurrently. The
project team selected the Virtual Machine (VM) operating system to become the BeursBase database server because it came
with SQL/Data System installed. The MVS operating system did have DB2 installed, though this facility was not supported
for general usage. During the development of the REXX-based Client/Server enviromnent it was found that the SQLiDS installed
did not support a server mode. SARA didn’t want to invest in a higher SQL/DS level, as it had other plans. But first, the project
teamdecidedtod~elop~~~necessmyClient/serverpro~~, aswillbediscussediuparagraph2. Withouta’true’Client/Server
enviromnent the project team also decided to develop the first user applications on the VM host (with the IBM development
environment Cross Systems Product).

The fnstsigns of strategic movements were already disclosed in 1992 as the 30904OOVF (S/370) was replaced by a 9021-720
(S/390). Developments accelerated in the fall of 1993 when SARA afl~lounced it would stop its VM service at the end of
1995. First it reduced the 9021 to a 580 when it stopped the AIX service on this machine. SARA decided that the future role
of AlX woukl become more important, therefore it adopted a new facility, a one of IBMs new developments: a AIX cluster
of R!%OOO computers. ‘Ihe cluster installed consists of four 590s and three 980s each equipped with 1 Gb RAM and 6 to 10

- Gb disk space. The reason why SARA adopted the new hardware is because it is relatively simple to add processing power
- to the chrster. Qne simply adds one or more R!%OOOs. Another reason is that au AIX cluster supports ‘farming’, or distributed

processing, which was highly necessary for the high performance computing services offered to the more technical faculties
Chemistry and Physics.

Though already in the final stage of development of the VM C/S enviromnent, the project team decided not to wait for more
developments to come, but to test the REXX-based C/S environments’ flexibility immediately. Because the new AIX facility
was provided with IBMs latest version of the DB2 database management system, DB2/6000, now a real C/S environment became

_ .,an option. The project team decided to develop in parallel to the VM C/S envimmnent au AIX C/S environment in which DB2/6000
would operate as a real database server. It was hoped for that REXXs flexibility would minimize the redevelopment effort.

1.7 Keeping focus

hrorder to avoid problems in diiussing the REXX-based C/S environments, the following commentary is necessary. First,
not one but hvo REXX-based C/S enviromnents were developed. The VM C/S enviromnent is referred to as the ‘old’ C/S
enviromnent, the AIX C/S enviromnent is referred to as the ‘new’ C/S environment. Secondly, the C/S enviromnents have two
levels: a X.25 data link level (ASE-FEWEC) and a database level (F’EWEC-SARA). The C/S implementations have a common,

.

6

i.e. fixed, X.25 data link (receiving ASE data). With respect to implementation, the area of interest in this paper is primarily
the database level (see figure 2). The difference in implementation of the C/S enviromnents stems from the fact that DB2/6000
(the AIX RDBMS) & and SQL/DS (version 2.2 of the VM RDBMS used) i& not a database server. Thus to establish a VM
C/S enviromnent we needed to develop our own C/S enviromnent. From an application -and database perspective the VM C/S
environment is not a genuine C/S environment because both applications, e.g. VUPOS, and database, i.e. BeursBase, reside
at the host. This is in contrast with the AIX C/S enviromnent which fully supports client applications. Thirdly, both systems
ate fully operational and perform well. Fourthly, with respect to design, development, and implementation issues both VM

- C/S and AIX C/S implementations are discussed from developer and user views and from both technical and non-technical
points of view. Fii after WPOS was implemented further application development for the VM C/S envhonment was stopped.
Thus a discussion about future plans and strategy in this paper, refers to the AIX C/S environment.

2 The design for a real-time Stock Exchange client/server environment

2.1 Moving to a client/server environment: the first level

Figure 3 The organizations involved and their systems.

3 Client/Server environments

- ~ 3.1 The Client/Server concept

Figure 3 shows the ideal setup of the organizations involved
and their systems. The ARTEMIS system of Beursdata is fed
on a real-time basis by ASEs trading system TSA. FEWEC

has to develop X.25- based communications, a local real-time
data link, including a subsystem for temporary data storage.
Also FEWEC has to adapt a C/S environment for data and
information. Data received should be inserted in a database
server (BeursBase); information should be retrieved by client
applicationsfromthe host database. The C/S environment should
be developed using open communication standards.
For manageability reasons the REXX-based Stock Exchange
C/S environment project is divided into the following sub-
projects, see table 2.

Since its introdt~$on, the concept of Client/Server has been discussed among a broad range of disciplines by a large number
of people. Scientists, business professionals and many others have been vividly diiussing of what one should and should
not include in the C/S concepts. As there are so many distinguishable perspectives as opinions, no full-proof C/S definition
has been formulated, so far. This paragraph elaborates on our ideas of C/S, hereby avoiding great difficulties and long discussions
in placing our C/S enviromnents into general C/S frameworks.

.

7

3.2 The five Client/Server levels

C/S can be viewed from both technical and non-technical perspectives. The C/S concept is limited to four aspects, namely,
data, database, application programs and users. These four areas include both technical and non-technical perspectives. In
general one can distinguish five C/S levels which are exemplified in figure 4. Every higher C/S level inherits lower level
functionality.
In the next paragraph fuS the general levels of C/S are discussed. Then table 2 is further explained by schemes of the architectures

. of the two C/S enviromnents

A) The X25 dabs link

nble 2 An overview c

(1) Relational database model

(2) DBA manipulatmn, monitonng
and authorization programs

(1) data-SQL converter

.

(2) BeumBaselink

,..

(3) SQL statements exscuti

.

(4) c/s monitormg program

he projects and canponents of t he REXX-based C/S environments.

. ..~...

‘Ilough applicatmn programs for database, not data, manipulation, database monitoring and authorization are necessary,
the are out of the scope of tbu paper At the mmnent these applications are under develqnnwt and will be REX&b&.

Before the data received can be stored into BsumBase, one has to remodel the data to the relational model defined. The
Iimction ofthis progum is to create SQL DML statementn out of the data reoewed

.

An application tich provtdes the data and session link layers from the PS/Z to the database @sumBase) for SQL DML
statements execution. In the VM C/S this fun&m is p&i&y implemented by a REXX FfP-bwed prognm In the AK
C/S wviromnent Uus program m replaced by a C/S aoRware package named Client application Enabler/Z (CAB/Z).

. . .._.____..

This applicatim program emmtw the SQL DML statements ,,,to BarsBase, in both C/S e~,timmti. In the ‘old’ “M
C/S the application runs at the VM host, in the ‘new’ C/S envmx,,nent ,t NM at the pc.

__________..

Like the X25 Monitor the ClientiSener Monitor infom,atio,, about the CIS and BsumBaoe stat,,a is ,,ecewxy Like the
X25 environment the US environments should rm, continu,,,sly and autonamowly For the ‘old’ “M C/S m,v,ro,,ment the
monitoI is alightly dl!Terent then for the ‘nL?x# Alx c/s environment.

(A) A Client/Server data link.
- If the database as well as user application programs reside on one computer system, one cannot speak of C/S. In our C/S

enviromnents, the database residing on this computer system, is fed remotely with data. Therefore we argue that, from a data
perspeotive, this is the most simple form of C/S. In gene& if one looks at the user, database or application program perspectives
this is considered not to be C/S. The reader should keep in mind that all subsequent C/S levels discussed use this ‘C/S level’.
As will be shown later, it is this data C/S level which distinguished the two C/S environments developed.

(B) Application program clients - application program/database server level
In the second C/S level siile computers of end-users ate the clients populated by several relatively small application programs.
These application.program make use of a computer system acting as a database server. In addition, the remote host system

.

8

is reachable by the end-user too, for larger applications programs, as the local computer system lacks performance and/or the
communication line capacity is too small for large scale database I/O. Then, in that case the end-user computer system is used
as a dumb terminal as both processing and database I/OS are executed at the remote server.

(C) Application program clients - remote database server level
The next higher level of C/S is when all applications are executed at the clients and the host purely acts as a database server.
Thus advanced and complex processing is done at the client level. Three requirements have to be fulfiied. First, faster and

- more complex client computers. secondly, a sophisticated communication infrastructure is necessary to cope with large scale
database I/O and processing. Thirdly, the application programs developed are by far more complex than in the case of C/S
level B .

5 (4

(Apps and Database Server)
i : ,--I

Figure 4 Five levels of Client/Server environments.

_ ., (D) The distributed database level
An even moE advanced C/S level is established when database processing is distriiuted and fully integrated in the C/S environment.
In this case one has remote as well as local database servers co-operating in a C/S environment. The client computers system
can be such a local database server as well. Thus it is not important where the data is stored and where the processing is done.
At this level data is stored where it should, for example user specific data is stored as close as possible to the user. In addition,
for performance reasons, the dtibuted database environment decides where to store application specific data. For performance
reasons this can be as close as possible to end-users, to some extend introducing data redundancy, or as central as possible
at a remote database server. Thus the distributed database environment decides where database processes can be handled at
best. At this level client computers can act as application clients as well as local database servers simultaneously. At this C/S

.

9

level due to limited client computer system performance (as high performance computing applications programs need) end-users
are still able to use application programs directly at some host system, which acts as both database and application server.

(E) The distributed application level
The most sophisticated level of C/S is established when aside from the distributed database enviromnent, the application programs _
too am dishibuted among several clients and servers. Thus the C/S environment decides where to handle data as well as application
program processing. For example I/O intensive database operations are executed at a specific database server , CPU intensive

- calculations are executed on a sped& application programs server, small database operations are run on a local server (client)
and the remainder of the application programs are executed on another client. In research nor in the business environment
has the fifth C/S level been implemented yet.

l.u summary, the FEWEC-SARA data link in both VM (SQL/DS) and AIX (DB2/6000) C/S environments is purely C/S level
A. The AK C/S environment from an end-user and application programs perspective, is of C/S level B. Before discussing
in greater detail the future plans and strategy with respect to the directions the AIX C/S enviromnent will move, the developments
of the C/S environments so far, are further discussed.

VM/CMS

Figure 3 lhe VMLMY ClientlYerver enwronment.

.

10

3.3 The VM-C/S environment

Figure 5 shows the architecture of the VM C/S environment. The data flows diitinguished are explained briefly. The X.25
data packets am received by X25READ (arrows up) and written to a file (arrow down to OW2). X25CONTROL checks this
f& on validity (packets complete?), consistency (right sequence?) and completeness (all packets received so far?). If not the
case retransmission of one or a range of data packets is requested (arrow down) and, when received (arrow up), written to
a temporary file (arrow down). The temporary file appended to the first file. is written to a complete data packets ftle by

_ X25CONTROL (arrows up and down). Reading the complete data packets file (arrow up), Cook decides which lines read
have to be converted to BeursBase data model formats (SQL). Lines containing only a synchronizing timestamp, are not used
directly as we will see later. Each SQL statement generated is put in a separate file (arrow down), pmceded by the parsed aebfoode,
timestamp created and some C/S control parameters. Next, Upload sends new files (atrow up) to the host (arrow down) through
aFTP connection (TCPIIP). At the host, the SQL statements executor, Set, sequentially reads received files (arrow up) and
!irstcreatesaSQL statemmt based on the parameters (the aebfcode phts -) found at the fti line. The result of execution
of this SQL DML (table SELECT) statement (our unique fcode) is combined with the SQL statement, comaining the actual
SQL DML operation (table INSERT, UPDATE or DELETE), found in the file. This SQL statement is subsequently executed
into BeursBase (arrow down).

For a continuous autonomous environment, VM file management is quite different compared with other operating systems
like UNlX, OS/2 and MS-DOS, a VM file limitation had to be overcome. In contrast with a hierarchical file structure used
by most of the operating systems, VM uses a flat file structure. Files are stored with the format 4ilename, 1 to 8 characters>
4% type, 1 to 8 character+ 4ile mode, 1 character plus 1 digit between 1 and 6> on a so-called virtual minidisk. Minidiiks
are mapped onto physical storage devices (DASDs). To be used by a program a virtual minidisk has to be linked physically
(by a CP LINK command) and has to be logically attached (by a CMS ACCESS command). VM allows multiple links, both
in exclusive or shared read and/or write modes. Because links to minidisks are static links, file operations by one program
are not ‘seen’ by another pmgmm. Thus, to establish a real-time VM C/S envimnment, Set has to refresh its link with the minidisk
where Upload writes the SQL DML data files to. This is done every time Set does not fmd the next file in sequence (file type
= number). To avoid the pmbabii that Set updates the link to the Upload minidisk continuously, Set pauses a few seconds
when after relinking no new files are found.
Every program mentioned writes a status file to be read by one of the two monitor programs, X.25 monitor and VM C/S monitor.
To establish a C/S environment, the VM C/S monitor needs information about Sec. Since it cannot read directly the Set status
file, it has to be frequently downloaded by Upload. In addition, Upload reads the Set status fLe frequently too, in order to
determine succe&d exe&ion of SQL statements, and to delete corresponding files by issuing remote (FTP) deletes accordingly.

3.4 The AM-C/S environment
- .

At a f& sight the architecture of the AIX C/S enviromnent shown in figure 6 is almost identical to its VM C/S counterpart.
However, what seem ‘minor’ dii?emnces in design with respect to the VM C/S envimnment, results in tmmendous improvements.
First, because a s&da&& C/S interface (Client Application EnablerI2) is applied, Upload is dropped. In addition, because
Set executes the SQL DML statements from the PSI2 (client), no special file operations (minidiik link refresh) are needed.
Thus, this C/S environment gives advantages from both control and integration perspectives.
At the one hand, better control (e&&veness) because all status (ffie) information is directly available to the C/S monitor program,
without necessary tricks. On the other hand, integration of functions is enhanced (efficiency) because programs involved run
concurrently on one computer.

11

In &e next paragraph we discuss the C/S ar&itec~ in greater detail, especially with respect to REM and its interfaces used
iu the C/S environment.

F igure 6 The AIX Client/Server environment.

4 REXX and the interfaces used in the VM and AIX C/S environments

4.i Introduction

The basis of this paper is to elaborate on the impressive role RFXX performed in development and implementation of the VM
andAIxc/selWiWments.Inparticular,progr amming techniques, tips and tricks applied form the main subject for this paragraph.

.

12

Basically, the answer on the question why REXX forms the core
in the development of the VM and AIX C/S environment, is
visualized in figure 7. This figure shows that REXX, compared
to other programmin g languages and development enviromnents,
is exceptional with regard to supported interfaces. True, REXX
is not the exclusive language having so many different interfaces,
in this respect for example is C of equal quality, though it’s the ease

- of us which makes REXX unique. hr addition, the fact that REXX
programs cab be both interpreted and compiled, makes REXX
special.
For each interface shown in figure 7 some general and REXX
programming concepts applied are discussed.
Unfortunately, to avoid lengthy discussions, only some glimpses
are provided. Figure 7 REXX interfaces.

4.2 REXX flexibility in C/S environments: designing for both performance and portability

Our expe&nce is that REXX can be used very effectively in C/S development. One shot&l be aware of the programming power
which comes with REXX. Like any language one can benefit tremendously if one is cautious about performance and flexibility.
First, develop REXX programs as universaL i.e. system-independent as possible for portability reasons. Secondly, do not make
use of operating system specific functions, unless there is no alternative available. Thirdly, code well-documented, though
as compact as possible. This is especially true if one does not use compiled code. Fourthly, when necessary and if possible,
test programs on different hardware as soon as one can. Don’t wait until there’s no way back.

4.3 REXX and embedded SQL: the REXX-SQL Interface

Aside from some exceptions, most of the administrative information systems in the economics discipline, especially in the
business em&nmen~ are charac&ized by only a few fundamental functions. These comprise data storage, data manipulation
and information retrieval and presentation. Siice its introduction as a general purpose query language, its popularity is growing.
Nowadays use of SQL, an acronym for Structured Query Language, is widespread. For years now, SQL has a solid place
in the FEWEC IS curricula. Its adoption in the C/S development was inevitable.

The REXX-SQL programmin g interface is available for all IBM database management systems (SQL/D& and several DB2
versions). Despite some minor differences the REXX SQL programmin g interface is implemented uniformly for all database

_ ., management systems. The usage of the REXX-SQL progratnming interface in the C/S environment is explained by the following
example. The example shows how SQL database manipulation language (DML) statements are generated by au data-SQL

converter, which we called Cook, aud how the are interpreted by Sec.

Each line from the checked data packets file is examined by Cook. If Cook finds relevant data, it ‘woks’ the corresponding
SQL DML statement, based on the specified action on the data line. Lines not of interest should not be converted into SQL
DML statements, though there is one exception: Cook does not use lines wntaining control data consisting of synchronizing
timestamp for the X.25 wmrection. However, lines containing ASE trade volumes data do not have a timestamp. In that specific
case Cook uses the timestamp found in previous line processed, which sometimes contain such control data.

.

13

1 lSS7ANFA36058NMC!OO360584 8104811 NM2 4040 55500

3 864An~C22311~0000223113 220000 2 __ _

1 lS88AOFC37?50NI,QQOO5775P$ 19655 15
2 783AMFA002Q8Nt00000030~7 8104824 m2 16040
1 1889AHFA0092lVL0000009215 53104826 NLG2 6000 245136
1 1896ANF~494~~0P06349488 30104826 Ia&2 16SO 975360

a 1665~FL34948~QOOO3494~~ &04%?8 aId32 3,660 lPSO0 1690 103800

Example la Small port ion of the checked data file.
~ -

The body of Cook is a huge four-level select, which corresponds with four alphanumeric characters found on positions 8 to
11 of the parsed data line. The parse command, like select another powerful REXX feature, has been applied in Cook many
times. This increase flexibility and maintainability significantly, in contrast with direct (static) usage of the BeursBase data
definitions. The last line of example la shows the code ‘ANFA’, which stands for ‘ASE’, ‘Price’, ‘Stock’, ‘New’, meaning that
atdheAms&h stock Exchange a newprice for a stock transaction has been established. Based on the ARTEMTS data
dictionary Cook builds a SQL DML INSERT statement for the NOTERINGEN table (example lb).

1995-02-20-16.39.13 0 00173 0 1
INSERT INIY) V67CVPOS.NOElUN~N VALUES (:fix@ ‘199502-20-16.39.13’, 5, K’, ‘0: 99.9, W , ’ ‘, ’ ‘)

Example lb SQL DML,: INSERT statement generated by Cook preceded by t imestamp, C/S control parameter 1, ASE fcode
and C/S control parameter 2.

The SQL DML statement is preceded by the ASE timestamp, a C/S control parameter, the ASE stock code (aebfwde), and
a sewnd C/S wntrol parameter. Only the ASE parameters were found in the raw data file line, the other two parameters were
added by Cook. In the SQL DML &atement the host variable :fcode is put in place of the ASE stock code, because the ASE
stock wde is not unique over time. First Set parses the SQL DML statement from the file which is preceded by the creation
t&stamp, a C/S wntrol parameter, the ASE stock wde (aebfwde), and a second C/S control parameter found in the raw data
file. Then See generates a SQL DML statement to retrieve the unique FEWEC stock code using the ASE stock code and the
creation timestamp (example lc).

-. Example lc SQL Dh4L: SELECT statement generated by Set to search for the unique FEWEC fcode.

The characters pmceding the SQL DML code are stripped away and the found FEWEC stock code is put in place of the host
variable :fwde. Now this SQL DML statement is executed by Sec.
Stocks are character&d by both a moment of introduction and a moment of extroduction. The majority of stocks once introduced
exist pern~~~tly, however, there is always a possibility that a stock may be extroduced. Stocks can be extroduced for many
reasons. In case of a management buy-out, a stock split or a bankruptcy of the ftrm, trade is ended, and sometimes a new stock
will be introduced. In wntrast with stocks, bonds are always extroduced. ASEs policy is that after stock extroduction the stock
code comes free and is re-usable. If one intends to store all stock prices ever listed, like in BeursBase, one has to introduce

.

14

cummand = “SELECT MAX(fbde) FROM” Ins-Tabcl
SQL.3 * ‘SQLGETNEW
CALL prepares -_ _

Example Id SQL DML: SQL DML statement to retrieve the matiurn FEWEC fcode. - .

- instead a unique stock code. Thus every time ASE introduces a new stock accompanied with their ‘unique’ ASE stock code
(aebfcode), we have to map this stock code to a tim&rdependent one. A simple solution is to use the maximum FEWEC stock
code found in the stock table, plus one (figure 1 c). For identification purposes and to keep track of all stocks, one needs to
store both stock codes as well as both dates of introduction and extroduction. If stocks are still tradable their extroduction
remains empty, in SQL we set the datavalue to NULL.The generated unique f&e is subsequently used in a SQL DMI, INSERT
&atementtoaddthestockintroducedtothelNSTRUMENTEN table (example le). Identical to the SQL DML iusert statements
update and delete SQL DML shtements are generated, except for the RWI’RUMENTEN (securities) table from which a delete
is not allowed.

Many additional remarks can be made, however, three essential are discussed First, it is never the case that a stock price precedes
stock announcements. Thus the introduction of a new stock (or a renewed stock, for example, due to a stock split) happens
always before new stock prices arrive and therefore there exists always a unique FEWEC stock code (the SQL statement generated
is an INSERT into the stocks table). Secondly, official stock prices send can be modified or even withdrawn. Thirdly, if the
X.25 connection is closed in the evening, a fmal file is generated. In contrast with the other files uploaded, this file does not
contain a SQL DML statemen t but an ‘End-Of Day’ message. This way Set is notified that no more files will be send that day.

FEWEC ‘unisue’ stock code
ASE scpauity name.
FEWEC set* type (bond, stock wm et cetera)
ASEintMductiondtitO
ASE errfrodwtkm date

/* fS@XB3E *I Oftibia INanationsl Standard Idmtificcarion Number
/* ‘4EEmmDE *I ASE stack code

ntepac: “9 P IaNTI? */ tit-1
-%alarkfc5de*,*, i* h4ARKT~CODE *I
**m*wi@e*‘,“,

h4iUkdwde(t&ihlmark*noMIffioialmarket, etoetenr)
P NOIERING */ ClnTcnf price

““*-+EPZ”, /* Vti~i%Ym7wG *I Ulhft&f&6?d
um-@aJ.-:z PVAL~AI?xEKENING * Vahuapid
*“‘kW@,“, P F@4l2s~SW~AIF *t ASE
““Omzetcode”: “> /* OMZET_coDE *I AlilOUtltbradGdCDdC

**-“‘,*. /* CI3ATUMl *t coupon date 1 (bonds)
““&fual2”,*, /* CDATUM2 *I

- . eenheid” ” . , i* EENHEJD */
~w-;~‘“d”’

“O,*, i* NOMINAAI, *I Nomirrcll vahtc
“*f!nayp&‘“,*, P FONDSTYPE */
“mkWVW~,“,

ASE kecuiity type @cad+ stock, wrmmf, et cetera)
/* Y

nmkWd6f~“‘,*,
Definition 1 in official ASE trade newspaper

f* *J
‘*kymbol”:$

Definition 2 in of&ii1 ASF, tradct ~~~wspapet
/* *I Symbol

““‘knee”.*“, /* */ smalieat nlltn~ ofklkmMlent availabk?
“~coopondate”,“, /* */
izlema~,“, f* *I ~~~
.-Ytlfmfkfaf!f”“, I* *I htW%t kM
rn 1

1
Example le SQL DML: INSERT statement from Cook regenerated by Set with the unique l?EWEC fcode.

15

4.4 REXX and GUIs

REm on IDM platforms doesn’t come with a sophisticated GUI. One reason one can think of lies in the diversity of systems,
in terms of hardware and software to be supported. The GUI is the most hardware and s&ware, i.e. operating system, dependent
of all software components. For example, mainframes support primarily text-based character terminals. Personal computers
work with the OS/2 GUI known as the Presentation Manager. AIX based RS6OOOs use the widely accepted UNIX GUI Xwindows
extended with OS/F Motif. Then making it even more complex some GUIs are supported on multiple operating systems for

- inmnce Xwindows is supported at the PS/2, the R!ZOOO, the S/390 and SP families. Finally other hardware manufacturers
have adopted REXX onto their systems like SUN (Spam), Hewlett Packard (HP xxxx) and Commodore (Amiga), for instance.
IBMs strategy not to support a platforms wide REXX GUI is the only choice.
Thus for software (especially progr amming and development tools) manufacturers specializing merely one or two platforms
REXX-supported GUIs can be profitable market. For PS&s there are two REXX-based GUIs available. At the one hand there
is VX-REXX marketed by W&m, and Viiro REXX marketed by VisPro. The first REXX GUI FEWEC acquainted with,
VX-REXX, was bought. Not to undervalue VisPro-REXX, FEWECs choice was not a poor one.

4.5 REXX and TCP/IP: REXX FTP API

In the VM C/S environment the REXX-FTP interface plays an vital role. Without this interface the quasi C/S enviromnent
could not be established with REn. The REXX-FTP intetface, written by several IBM employees, became available as &ewam,
sdd-on product of TCP/lP for OS/2, in 1993. The fnst author of this paper was first acquainted with this product in June 1994.
After solvii in&l&ion and operation problems we acknowledgement several persons in the REXX and TCP/lP community,
as the @XX-FTP interl&e now works excellent. As au elaboration on section 3.3, our utilization of the REXX-FTP interface
is discussed next.
At the PS/2 Cook reads the file containing the X.25 received data packets. Other lines with data packets with synchronizing
t&stamps for the X.25 connection, are only processed for these timestamps. Cook converts each relevant line into a SQL
DML &atement and subsequently writes it to a OS/2 HPFS file with a naming convention of wdd.#>, where # stands

- for a sequence number. When started Upload starts an FTP session with the VM host via the REXX-FTP interface with the
~Itpuserftmction.The core of Upload is a loop in which several actions are programmed. Upload pauses until new files have

been ‘cooked’ (Cook), then uploads them individually to the host using the ftpput function. If successful uploaded, Upload
deletes the local file. Another action within the Upload loop is the frequently download of the Set status file using the ftpget
function (table 3). The download frequency is set based on a fIxed number of uploads. Every day the FTP come&on is closed
using the @close function and Upload is ended. Early next day Upload is started again by the VM C/S Monitor. Cook (packets
processed) pauses when the Upload (packets uploaded) delay exceeds a certain threshold (200 files). This is necessary because
the number of files in a local directory is negatively correlated to Uploads speed. Analogous to local file deletion Upload frequently

_ ., erases mmote files, successfully executed by Set, using the ftpdelete function. For the VM C/S Monitor, Upload frequently
writes its operational status to a local file (table 3).

16

x PVC.raw’ all data pack& received, but not checked on con%istewy, validity OI squenoe;
.-...

xx HERTRANSbnp a but%. for the retxa,w,,rned da packsts;
. ..

CHECKED.raw- the complete checked set of data packets SO far,
. ...

CHECKED.statw

I

a status fde including tiwmatia, about the PVC8 (number of retrawni&ons, total nmnber pa PVC) and the CHECKED.mw file ot%et
wiuch happens to be the same an its tile&~). This information tm IS displayed m the X25 monitor

._.............................._._...

yyyymmdd.CHECKED at I l .W,,m the CHECKEDraw file u renamed with the CuIIwt date at the bqii Of the t ibmame.

ClWk”

Cook.stahu a status file cmtab,i,,g information about Cook to be displayed in the C/S mtitoq
.._._._______...

yyyymmdd.#” way SQL DML statement ,w&ter, to a tile startiq with the date and ended by a nequence number (#)
. ..

yyyymmdd.#S-’ ntop file
. ..

yyyymmdd.Cook.L,,g Dependent on the loglevel chow, every relevant operation (reading CHECKED.mw, creafing a SQL DML, f&g the SQL DML) is
logged Into thin fde.

. ..

yyyymmdd.Cook.Stahrs all infmatim needed for the C/S mautor thu file

. ..-..

yyyymmdd.Upload.St

VM yyyymmdd.Log
Ax yyyymmdd.Sec.Log

every SQL DML statement fde read and executed (SQLCA) ia mitten to this ffie

. ..

Vhf: yyyymmdd.Statw

‘Lnble 5 Some t~lmames used by the X.25 data lmk pmgrams.

‘>*’ ad ‘** mean fhaf the files referred to are used as input for the particular program

4.6 R&X and X.25

Although it was not used in the development of the C/S environments, the X.25 interface to the OS/2 Communications Manager
(CM.0) is a good example of the importance of REXX in communications. The CM.12 X.25 iuterface is provided for a variety

_ .,of programming languages such as C, COBOL, FORTRAN, Assembler and REXX. The main reason not to use REXX for
X.25 based communications is in order to control the X.25 data link in terms of priority scheduling and multithreading and
to secure application performance, one would be better of with C. As will be discussed later in this paper, action is taken to
take a more detailed look to port the C-based X.25 programs to REXX.

4;7 REXX and file handling

From maintaiuability and &&lity perspectives it is wise to develop REXX programs using High Performance File System
(HPFS). HPFS, which comes standard with OS/2, should be preferred over the 8.3 character Jim&ion of the DOS Fii Allocation
Table fh system @AT). In our m-based programs we benefitted from the HPFS fm which allows using long fi lenames .

17

34

which can be as 255 char@ers long. In table 3 the most important f&names used in the X.25 data link are shown. In the development
of the C/S environments several advantages of using HF’FS over FAT were exploited.
First, if a system crash occurs IIPFS file are almost always recovered. Secondly, it is preferable to use semantically sound
filenames. With the 8.3 character FAT limitation it is impossible to name files approlniately.

4.8 REXX and C programming

- In the development of the C/S environments, like REXX, C plays an important role too. As discussed earlier, C was used to
develop the specilic X.25 programs. In addition, some general unctions, implemented with C, were developed for C/S simulation
aud to overcome some REXX limitations. One of these general C-functions, xread. was to overcome the REXX fde-sharing
limitation. REXX programs have to fmd external functions in a so-called Dynamic Link Library, or DLL. Such a DLL has
to be developed and compiled by C.
This paragraph is concluded with table 4 listhrg the major hardware and software components used in the development of
the C/S environments. In summary, at the one hand REXX was partially used to develop some of the components required
for a C/S enviromuent (Cook, Upload, Set), On the other hand, for those components not developed with REXX (X25READ,
X25CONTROL, external functions), REXX was the ‘glue’ to integrate these components (X.25 and C/S Monitors) with the
REXX-based components. This paragraph focussed on more technical aspects of the C/S environments developed, especially
the role of REXX within the C/S environment.

RDBMS

climltlservsr application

Table 4 The sofhvare packages us

C-X25 Al’1 (CM/Z)

- VisualGen (4 GL)

design of the C/S environments.

Once established a C/S environmem one can develop a broad range of user and system application programs using BeursBase.
The next paragraph, using section 4.4 (REXX and GUIs) as a starting point, diiusses the value of REXX for application
development, We will elaborate on important aspects of information visualization, templates and object-orientation using
REXX. The following applications are discussed: system applications (the X.25, VM C/S and AIX C/S monitors) and user
area applications like the AIX version of VUPOS.

.

18

5 REXX User programs for the C/S environments

5.1 Database connectivity

In the AIX C/S enviromnent, C/S concepts used ate much more sophisticated. For instance, applications at the client, preferably - .
GUI-based, are able to show more infotmation about the C/S environment. In this way a user can be more actively involved.
Fii 8a shows an object with user and database information. Depemhng on the authorization level a user is or is not allowed

_ to modify the information displayed. The object in figure 8a is retrieved through object 8b, by a click on the Wijz’ pushbutton.
If the user is not allowed to do so, the pushbutton is set to not-clickable and its color is changed. If the information displayed
is correct or modified, the user can click on pushbutton ‘Con.’ to establish a connection. In the case of a simple end-user an
auto-comrect is pursued. Status inhormation about the necessary REXX DLLs as well as status information about the database
correction.

5.2 Object Orientation and REXX

Figures 9a thru 9c exemplify a way how to define and use objects in VX-REXX. Figure 9a shows the complex object which
umsists of a listbox and four entry fields. The object used to display tabular or graphical information is showed after activating
the ‘Genereer grafiek’ pushbutton in figure 8b. At fust the object is shown as in figure 8a. Then, based on the user selection
from the listbox., one or more properties are changed by message passing. If the user selects ‘Real-time’, no addinal information
is neozsary to show the tabular of graphical information requested, because the system date can be used. In contrast. if ‘Meerdere
dagen’ (= more thau one day) is selected, begin and end date are required. Also if Meerdere dagdelen’ is selected begin and
end timeis required too. Using a GUI this way keeps the user’s eye focussed onto the display and does not provide the user
irrelevant information.

Figure 8a Database connect infor-
mation.

.,.,,,,,,,.,,,~ ___ ^,..,.,.,.,: ..,_ ^i^,;;.*^ ,..-...,.,...)_ ..,.......,....... ^..:...^^...,..A,~ ..,.,.,.......,. _ ^..^.i ,,,.,,.,...,...,.. _ . ^,_ ..,.. i ..,.,._,,,,,,,,,...,., I.. ..- .-.. :,.-i .,.,., L-,1. ,“._,“. .,.,.. ^. .^....A ,.., ;,..;,.“r i .,...,.,.,,,.,.

Figure 8b Object with database connect/status information.

.

19

meerbere dagen
meerdere dagdelen . .
1 dagdeel
1 dag

Figure 9a Object with hidden entry
fields.

1 dag

Figure 9b Object with all entry fields Figure 9c Object with some entry fields
shown. shown.

5.3 Developing general parts and templates

A sophisticated way of programming is the use of objects in
the form of templates. Object orientation facilitates the use of
generalpartsortemplates. Anexampleofageneralpartis shown
in figure 10. This object is especially useful for debugging.
Every SQL statement parsed is checked on its SQLCA. If the
SQLCA is not equal to 0 (success) or 100 (no more rows
certified the conditions specified), further program execution
stops and the SQLCA object is displayed.
An earlier example of a general part was already discussed.
Figure 8a, the object for displaying database information, is
used in every application developed so far.

5.4 GUI design and usage: monitoring

The X.25 monitor
A monitor should be kept simple and should give direct i-
nformation. The X.25 monitor, developed for control of the
X.25 data link displays all the information necessary. Informa-
tion includes the # of packets received, retransmitted, aud Figure 1U Object for presentation of SQL Communication Area

the # of retransmissions per logical circuit (PVC group).
Descriptor.

.

20

In addition vital program information is provided. Finally the
sizes of the input (unchecked) and output (checked) files, where
the raw data (packets) are stored, is displayed.
Several features are added to the monitor. First, to be certain
the screen update process does not consume too much time, a
timer event updates the screen periodically. The time period can
be set between 10 and 60 seconds in steps of 10 seconds. If au
immedii screen update is required, one simply clicks the update
pushbutton.

The AIX C/S monitor
Like the X.25 monitor the AIX C/S monitor provides direct
information about the underlying C/S processes. As the AIX C/S
environment supports full C/S, all the processing and programs
can be run at the client. Information about the various stages of
processing and programs is displayed. In contrast with the user
applications the database information is integrated in the monitor
window. The reason is to have all the information displayed in
just one screen.

Figure 11 The X.25 data link monitor.

The X.25 and C/S monitors are design to be displayed simultaneously
- The information of two monitors, X.25 and AIX C/S are integrates

as follows: the di&rence between the number of received data packet
(X.25) and the packets cooked (ALX C/S) is the first packets delay
ThepacketscookedmeansthenumberofSQLDMLstatementscreated
The ditference between this number and the packets executed (AD
C/S) gives the second delay.

The VM C/S monitor
_ ..Notice that the VM C/S monitor is very different from its AIX Cl:!

cmnteqmrt. Since the VM C/S environment is user written, information
about the underlying program (upload) is displayed. The information
of two monitors, X.25 and Vh4 C/S are integrated as follows: th<
diEerence between the number of received data packets (X.25) auc
tie packets cooked (VM C/S) is the first packets delay. The packet
cooked means the amount of SQL DML statements (files) created
The difference between this number aud the packets uploaded (VIv
C/S) results in the second delay.

.
Figure 12 The AIX C/S monitor.

21

383

_ Figure 13 A full screen display of both the X.25 monitor (left) and the VM C/S monitor (right).

Finally, the difference between the packets uploaded (Vh4 C/S) and packets executed (VM C/S) gives the third delay. In figure
13 both the X.25 monitor and VM C/S monitor are displayed.

5.5 Other graphical user-interface features

One of the issues that was ignored for a relatively long time, because the development of the C/S environments did have so
- many in&resting research, design, implementation and usage issues that the project team almost forgot about a neat menu structure.

Application of the menu structure is simple because much of the preparation for it has already been done. First, the framework
for application development was designed long before. secondly, database control and maintenance can be welldefmed Thirdly,
every application program is chara&uized by some general fimctions which can easily be specified. Fourthly, the information
generated can be visualized in a limited number of formats: on the computer display, on paper and on magnetic and optical
mkdia. Ihe general menu structure to be designed should be a shell in which every application developed can have a place.
‘l’hen based on user and program authorizauon users can or cannot select the specific application program. The general purpose
menu structure is shown in figure 14.

22

5.6 VX-REXX specific objects

Of the many special objects, the timer object is a very convenient one, especially if one designs aud implements autonomous
monitors. For control purposes, one has to have feedback frequently, and if necessary one has to maintain the C/S environment
dym&Aly. Using timer objects one can frequently poll the enviromnent (exception management) and retrieve information

(status files) to be displayed.

6 Future strategy of the C/S environments

6.1 Extending the matrix framework with (REXX) application programs

- ~ Figure 14 The BeursBase application program shell or the general menu structure of the BeursBase application programs.

VUPOS itself being poti from the mair&me to the personal computer. In contrast with the Cross Systems Product mainframe
version, the personal computer version, implemented in VX-REXX is provided with a graphical interface. Compared with
mainframegrsphicsusingGDDM(CSP-ADMCHARTinterface)graphicaluserinterfsceismuchmoresophisticated.
Though the most important advantage using a GUI painter is the signiticant reduction of development time. Especially for
students it isvay conveuieut to be able to generate usable output in a shurt time. In figure 15 an example of a simple XY-chart
ishown.ThisXYchaadisplaysstockpricedevel~ton~~~~ 1Wofthalargestm~oftheNetherlands
at the Amstehm Stock Exchange known as ‘Konink&ke Nederhndre Pebvkum iLha&chapp~ or ‘Royal Dutch’. To the general

.

23

public the mukinational is known as Shell. A minimum of additional information is provided, like ASEs trading periud ((9.3Oam
to 4.3Opm), the number of transactions found (159) and both maximum (188.60) and minimum (190.70) prices of the day.
It still is an art and a science area to buikl good infomration displays. It is simple to expand the above example to a chart which
shows, for example, the development of the portfolio of a user over a longer period bf time.

I- KON NED PETR MY 1
I I

I 1 I I I 1 I I I I , I I I
t I I t , I

191 ------------i -----------; -----_______ ;--- _______:
t

,-----------:------------I r-----------:------------
I I . '

,/7 De grafiek wardt samengesteld i i

190

189

, I I I
9 10 Ii 12 13 14 15 16 17

Tijd (in uren) k

Figure 15 Example of a VLPOS screen.

6.2 Designing user (DBA) programs for database monitoring and control
-.

Asthemrmberofusersis maeasing rapidly as well as the set of user application programs, the need for &u&o1 and maintenauce
structures emerges. Though kept in mind this was set at a low priority. The following kinds of control are desired:

Authorization control: users and application programs
‘lhere are several possibiities of how to deal with multiple users and multiple programs. First, in C/S environments authorization
can be placed at the user level. In this case every user obtains a userid. For maintenance purposes not very attractive, since
it entails much administration (users) and a lot of authorization (programs). Secondly, as au alternative authotiation can be
placed at the program level. In that case every program is provided with a userid, or better, program id. Now administration

.

24

is reduced and authorization is simplified tremendously. It should be clear that in this situation program users do not have
ditect access to the database directly. In practice, a combination of userids and program ids is used. This requires sophisticated
control. Up to now this has been done manually. An appropriate tool is under development.

Database control: database performance and tuning
- BeursBase grows on a real-time basis. At the one hand Exchange data is inserted continuously, and at the other hand users

and user programs add data as well. The largest tables in BeursBase contain hunderds of thousands of tuples and will rapidly
- grow up to tens of millions. It is not the physical size of the data that limits database operations, the gigabytes range will not

be reached for years, but the performance aud optimization issues. Reorganizing dbspaces, tables and indexes form a burden
on database operations aud database efficiency. This makes BeursBase so interesting for IS research. Therefore developments
for several applications for performance measurement and database tuning have been taken.

Database maintenance
Usually database management systems are not provided with user friendly maintenance programs. Especially for BeursBase,
database maintenance issnes ate of vital importance. Though there are lots of ideas on this topic, the have not yet been implemented
in practice.

6.3 Improving the X.25 data link

A point of weakness in the BeursBase
project remains the X.25 data link,
becaweonly one single communication
is in use. In order to minimize the risk
of data loss a secondary X.25 data link
is necessary. Figure 16 shows the ideal
implementation. Because ASE has two

_ separate PTT Telecom (the national
telecom operator) nodes. Therefore
FEWEC can be provided with two
separate X.25 links. Although the
SARA liuk is implemented with a single
line, no data will be lost when this
commuui&ion line is goes down. For
ahnost 100 percent reliable X.25 data

-. link with the ASE, the following ac-
tions have to be taken.

Figure 16 Two independent X.25 environments.

q Configuration of a shadow or backup X.25 connection, consisting of:
0 a second PSI2 with au X.25 Coprocessor expansion card;

- q a second ASE cxmwndn link, physically indgendent from the fust one. This means that this X.25 link uses
different nodes. At the ASE multiple independent nodes are available (Figure 16);

cl between FEWEC and the ASE, a second 19.2 Kbps PTT leased line;
q An uninterruptable power supply (UPS) for the two X.25 PS/2s;

.

25

317

q AREXX-basedcontrolstnlcture,as~~onFEWEC~~willheinstalledonbothX.25PS~.Thisintelligentmechanism,
a two PS/2s based monitoring system, should take appropriate action if one or more connections are lost;

[7 A hardware me&msm will be constructed to be able to cold-boot the PSI2 remotely. If the responsible system operator
is not at FEWEC she shot&l be able to reboot the system by a remote connection. (If one cannot tehret to the PS/2, it should
be possible by connection via one of the FEWEC servers). Using a cold-boot procedure sufIices, as the systems can start
necessary processes automatically.

In the fast half year of 1995 these investments are planned. In addition, several application programs are needed to create
autonomous control between X.25 PS/2s and the FEWEC LAN servers. Two identical REXX-based programs, running at
both X.25 PS/2s, have to check each other operations (file sizes and contents of the status files). If needed the C/S data link
to BeursBase has to be changed, from one PSI2 to the other, without any delay and appropriate action has to be taken to get
both PSl2s in operation again. Another program, residing at the FEWEC LAN server to check frequently if both X.25 PSI2
are running. Again, if some exception is found, appropriate action has to be taken. If, for some reason, one or more systems
do not response, say within 15 minutes or so, FEWECs computer support staff is notitied by email or screen messages.

6.4 Moving to the third and higher Client/Server levels

Eventually the AIX C/S environment has to move to the third, fourth and even fifth C/S level. Why? During the development
procems of our C/S environments we encountered mauy performauce problems. The larger tables where used by many programs
and even more users concurrently. At the same time these tables are maintained (inserted, updated, deleted) on a real-time
basis, resulting in many (dead) lock situations.

h- I I I I)

Looking over and over at the data, it was decided to split them
into several time categories, based on their anticipated usage
(figure 17). The fast category, real-time (today’s) data is stored
in a separate table, as this data has the highest priority. The
second category, this years data, is accumulated into a second
table. This data too is used very frequently (its size spans
obviously maximally a year). The third category contains data
from yesterday to a year before. The fourth and last category
is historical data and is actualized to the end of last year. For
performance reasons the last two tables are stored in dbspaces
without leaving space free and records are stored by stock by
timestamp. The first two tables are stored in dbspaces with small Figure 17 Data separated into time categories.

_ ..data and index buffers. Every night except for the weekend,
the following batch processing is done: the today table is emptied in this year’s table, also, at the end of December the last year
table is emptied into the history table. A more intelligent solution would be a dynamically calculated optimal database performance
with a minimum of data redundancy. Such an system area application program will be developed this year.

Moving to the third Client/Server level
Now for the C/S aspects one can imagine that the small real-time data table (today) used at a local database server would be
significantly faster than a host database. So the next phase in the development of the AIX C/S environment is to establish a
local database setver for real-time data @&Is DB2/2 for OS/2?). This will increase both application and database performance

26

for user applications like WPOS tremendously. In rukiition, a local database server is more suitably equipped to support batch
processing with the large database server as remote host.

Moving&Further to the fourth andjjih Client’Server levels
The third C/S level is relatively simple to reach, though should thoughtfully be implemented. User applications which need _
data for processing which is not available at the local server have to send requests to the remote database server. At least two
problems, i.e. bottle necks are obvious: first if the amount of data is relatively large, database I/O is heavy and all data requested

- has to be send over the communication line which consumes much time. Secondly, local client processing is, compared to
an AIX or VM host, though cheaper relatively slow. To overcome these bottlenecks, for some user applications it would be
interestrug to split up applications in several modules. Then these modules can be distributed across several systems, based
on the CPU and database performance nxpid. For example the portfolio simulation WPOS or a technical analysis application
has au econometrics/su&ical feature which calculates several stock performance indicators over a certain time period (from
actual real-time to historical data). Partial@, the indicators requested are calculated at the client using the local database server
(real-time) data, partially the indicators are calculated at the host using the host database server (historical) data. Finally the
client program uses some algorithm to gh~ the partial outcomes into meaningful information. Even if the host requires real-time
data (which is stored at the local database server) in total the results are generated much faster compared to the alternative in
which the client does all the processing. Clearly this is another interesting area for research and education. The fourth and fifth
C/S levels are within reach, though it will take at least two years before users can benefit from these ideas.

6.5 Speeding up REM programs More extensive utilization of REXX compilers

Much can be written on the subject of RJ%X in terms of interpretation versus compilation. For the most part in the development
of the C/S environments REXX is used by interpretation, except for some application programs which have been written in
VX-REXX. At the point where speed is of primal importance, up to this moment the choice has been for programming in C.
Using C as programming language implies using compiled programs. The main reasons for this choice are the flexibility of
C, the clear X.25-C interface as well as the robustness and performauce of C programs once they are compiled into executable

_ code. An advantage in C too is the easiness with which multithreaded high priority programs can be developed. In addition
there was no experience with the combination of X.25 aud REXX or with REXX compilers which can generate fast executable
code.
For manageabiity and maintenance reasons it would be wise to move from C to REXX. Currently research is conducted to
take this step forward. Moving from C to REXX is necessary because the experience with C programming is and should be
limited at FEWEC. The higher the progr amming, or more appropriate development, level the better. Thus one of the major
concerns is to make more extensively use of REXX under the constraints that X.25 support, priority scheduling and compiling
are supported and easy to implement.

-.
6.6 Sophisticated application programs: a World Wide Web future?

Though a detailed discussion about user applications should not be included in this paper, one serious idea is worth mentioning,
namely a portfolio simulation accessible through World Wide Web. As already discussed, the VUPOS portfolio simulation
is being redesigned for the AlX C/S environment. This application will be used for all the user areas defined by several of
the identied disciplines. For several reasons is the usage of VUPOS restricted to FEWEC members and students. First the
application is relatively complex and one has to have detailed knowledge of the underlyii pmozses. For students of economics
and FEWEC members this should be no problem. If FEWEC intends to use VUPOS as a public relations tool and make it

.

27

available to others for example high schools or other interesting populations, this will cause several difliculties. First, as said
WPOS is a complex program. !&cond.ly, it takes several screens to manage ones portfolio. Thirdly, processing is done interactively
which makes very large to huge scale application very costly and performance dramatically slow. Fourthly, a high-end OS/2

~- computer is highly recommended. Such systems are not so widespread in use.

Based on the rapid adoption of Internet, granted by the development of global information systems like World Wide Web,
it is ma&tic to con&de that high schools and other interesting populations are able to comect to h&met without having to

- pay iusutmountable costs. Thus a reahstic altemative would be a stripped version of WPOS, reduced to three to five screens,
supporting batch processing once or twice every day. This simplified or stripped version of WPOS should be provided with
a World Wiie Web in&f=. h&a&d at the FEWEC WWW server anyone, or if FEWEC so wishes, a selected audience will
be able to use the program in, for example, a large stock investment competition. The investment results of the competition
as well as the system usage itself can be input for research and education.
Anyway FEWEC is currently developing in cooperation with the ASE a WWW service which includes a real-time graphical
display of the AEX, the index of both Exchanges in The Netherlands. We consider this as a first step towards an Internet based
simulation, because this WWW facility will be used to research several interfaces, forms and displays for such a simulation.

6.7 Comparative application development

Once one has an AlX C/S environment as described in this paper, it is very intemstmg to examine and compare various development
envimnments ate available for C/S application development. Today numerous development enviromnents available. This year
we will use for example APL2/2 and Viige (both JBM), and CASE enviromnents like ADW from KnowledgeWare and
IEF from Texas Instruments/James Martin. Probably programmin g languages like C, C+t, Smalltalk (via VisualAge) and
COBOL will be tested too with respect to the tradeoff (compared to the 4GL development enviromnents) between an increased
development time and run-time performance.

_ 7 General conclusions and recommendations

7.1 Advantages of using REXX in a Client/Server environment

The project team of FEWEC conchtdes3 based on the experiences so far, that the REXX programming language is, in particular
in combination with the interfaces discussed in this paper, suited to develop not only C/S programs but a C/S environment
itselftoo. Even without having much experience in devebping C/S environments implementing a REXX-based C/S was relatively
simple. The project team benefitted from REXXs flexibility and portability as an AIX C/S environment was easily developed

-. using code from the VM C/S environment.
Especially in the design and implementation stages it is advantageous to have an interpreted language in stead of having to
compile code every time changes have been made to it. Finally, it has been proved that REXX user application programs can
be gorgeous from the outside, efficient from within and effectively fast in general without being to complex. This can hardly
be said of programs developed in for example C or C+t. Therefore in the IS curricuhrm of FEWEC REXX is preferred over
C or C-i-t.

28

7.2 Problems using REXX in a Client/Server environment

To temper the over enthusiastic mood of the project team, some problems or vague issues have to be dealt with too. Most of
the problems encountered are probably heard before, but one cannot overemphasize their importance. Some REXX interfaces
lack sufficient documentation, examples and example code. In the view of the project team every time the interface is used, _
the wheel is re-invented. Though there are for example many good REXX books available, most of them don’t go beyond
the intiuctory level. Also, voluminous manuals are not necessarily of high quality. Especially the REXX FTP, REXX SQL

- and REXX X.25 interfaces can gain popularity when documentation is extended.

Secondly, problems occur when one needs to share fues between REXX programs in OS/2. Files in OS/2 REXX are used
exclusively thus they cannot be shared among application programs. A solution was found in developing a C-based DLL function,
as we found that it was possiile to share the file this way. Using the C-function, OS/2 still results in DOS read errors, although
it works fine. If one lacks the specific experience of writing DLLs, it is a burden to find out how things are being done. Ideally,
a REXX compiler shot&l be equipped with a tool enabling developer (student), without low-level progmmming, to put functions
to be shared in a DLL.

Thirdly, more effort shot&l be put in REXX benchmarking and tool evaluation. The project team encountered difficulties in
choosing the ‘right’ REXX development tool and interface. Not usage of a REXX development was the problem, but which
environment should be used. Fortunately, talking in hindsight acceptable choices were made. Fourthly, sharing information
using status files is not the most sophisticated way of communication. However, no neat alternative was available. Especially
the issue of file corruption and system crashes makes the usage of files in interprogram communication volatile.

7.3 Overall conclusions

During the last two years development of the VM and AIX C/S enviromnents was successful. Both systems are operational
and future plaus aud strategy promise to generate amassively used AIX C/S enviromnent, high quality applications and a sound

- scientilic environment for research, educational and public relation purposes. Though the power of REXX has heady been
proved iu the cunent environment, as the AIX C/S environment moves further towards higher levels of C/S, REXXs position
as an advanced C/S development language and environment shall be indisputable.

7.4 Recommendations

Fin~,basedontheREXXexperiences,theprojectteamcomeswithafewpracticalrecommendatioasfordevelopers,manufacturers
and users as well, First, everyone wants better application performance. Though some other issues are of equal importance.

_ . One of the severe limitations of OS/2 REXX is that files camtot be shared among application programs. Working around the
problem is not the preferred solution. In au advanced envitonment as 092, file sharing between OS/2 REXX application programs
cannot be missed. Secondly, REXX still lacks some sophisticated interface toolboxes, especially for general and C/S specific
monitoring. Thirdly, however fully accepted in CASE development, REXX code reusability, re-engineering and a central
repository. are far from reality. This definitely has to change if REXX is to be used in large scale application development,
Fourthly, the basis for REXX-based GUIs has been set a few years ago, REXX development tools can be extended with more
specific and more appropriate GUI features. Finally, as a fifth recommendation one should develop more detailed REXX
programming handbooks with realistic examples.

29

8 References

[ASE94] Amsterdam Stock Exchange (1994)Jmsterdam Be&Time M&et Inforndon System @iRTEMIS): user mun@
version 3.0 (in Dutch), Beursdata B.V., Amsterdam.

puys93] Buys, E.0 (1992), TRANSPA:Ttihe Ned Gener&n (in dutch), Graduation project, Free Univeristy, Amsterdam
[Cowl84] Cowlishaw, M. (1984), The &sign of the REXYLunguuge, IBM Systems Journal, vol. 23, no. 4, pp. 326-335,

IBM, New Jersey.
I [Cowl90] Cowlishaw, M. (1990), The REXX Language, 2nd edition, Prentice Hall International, Englewood Cliffs, New

Jersey.
pate921 Date, C.J. (1992), An in&&c&n to Database Swims, vohune I, 6th edition, Addison-Wesley Publishing Company,

Reading, Massachusetts.
@%wi85] Davis G.B., M.H. Olsen (1985), Munugement Znformaikm Systems, McGraw-Hill Book Company, New York.
peit90] Deitel H. (1990), @e&q Sj&ms, 2nd edition, Addison-Wesley Publishing Company, Reading, Massachusetts.
[Deit92] Deitel, H., MS. Kogau (1992), 27re &r&n of Os/2, Addison-Wesley Publishing Company, Reading, Massachusetts.
[Enge95] Engel, J.P. (1995)JRTMS: the Amsterdam StockExchange andelectronic information services (m dutch), &&ation

project, Vrije Universiteit, Amsterdam.
[Germ941 H. Germau (1994). The REXhandbook: BASZCS, APPLIC4 TIONS and TIPS, Van Nostrand Reinhold, New

York.
[Gtise95] G&s, L.W M. (1995), BeursBuseproject: operation’s munud (m dutch, in preparation), Free University, Am&?&m.
@om90] Home, J.C. Vau (1990), F%wu&lMiuuzgement and Policy, 8th edition, Prentice Hall International, Englewood

Cliffs, New Jersey.
PM921 IBM (1992), mj&rrn produd Interpreter SQUDa& Sj&m Interjii, program d&+pti&oper&ns manual,

New York.
PM931 IBM (1993), 092 RJZXY: From Burk to I$&, IBM International Technical Support Centers, Boca Raton Center.
Bl3M94] IBM (1994), Ci%ntAppkdkm Enubkr/2! User’s Guide version 1.2, IBM Canada Ltd. Laboratory: Information

Development, North York, Ontario.
@4iss94a] Mkseyer, M.P. (1994) From Stockd& to real-time Exchunge Inform&m, in: Landelijk BIK blad, vol. 1, no.

1, pp. 25-27, Amsterdam.
[Miss951 Misseyer, M.P. et. al. (1995), TRANSPA is cdeabh: Long &ve WpylS andBeursB~e, Project proposal of VlJPQS

and BeursBase, Vrije Universiteit, Amsterdam.
mors94] Mot-sink, A. W. (1994), Receiving, tran.$onning, converting and adding real-time Amsterdam Stock Exchange data

to BeursBase (in dutch), Graduation project, Vrije Universiteit, Amsterdam.
[Qrfa93] Chfali, R, D. Harkey (1993), ClienYServerprogrMaring ti OS/2 2.1.3rd edition, Van Nostrand reinhold, New

York.
-...lRudd94] Rudd, A.S. (1994), Application Development using OS/2 REXX, Wiley-QED.

[Stal90] Stalliugs, W. (1990), Business Data Communications, MacMillau Publishing Company, New York.
[Tops941 TOPS, I. (1994), The Design andImplementation ofa Real-Time StockExchange Simukxtion andpetionnance Monitoring

System (in dutch), Graduation project, Vrije Universiteit, Amsterdam.
[Turb95] Turban,E.F. (l995),Decir~nSuppmtS’and&re&S’,4theditiorr,Prentice-Hallhttemational,Englewood

Cliffs, New Jersey.

30

