
Using REXX in a UNIX Environment
to Manage Network Operations

Lee Krystek
Boole and Babbage

109

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1. Using REXX in a Unix Environment to Manage Network Operations:

Lee Krystek - Software Manager
Boole and Babbage Network Services

Abstract: When designin
B

our network management and control product, we
needed to provide a way or users to construct scripts to control any foreign system
they might need to interface with via that foreign s stem’s console. We selected
REXX as this tool. Before we could use it, we ha B to augment the language to
give it the capability to be started automatically, connect to those foreign systems,
and manipulate our relational database.

-.

1.1. The COMMAND/Post Product:

Several years ago Boole and Babbage recognized the need for a product that
would be a focal point for network and systems management operations. This
product would monitor and control network equipment, computer systems,
and even application programs. Of special interest were non-SNA and
non-SMNP systems which did not support any network management protocol.

COMMAND/Post runs on a UNIX workstations. Initially the SUN SPARC
series of processors was used, however, porting to other UNIX systems is R
underway. A typical COMMAND/Post system consists of one or more
(perhaps even as many as 50 at a large site) workstations with color monitors
running a GUI such as Open Windows or Motif. The system is composed of
modules written in Smalltalk (an object oriented language) for the user
interface and “c” for the more intensive processing tasks. Sybase, a relational
database provides the data storage.

COMMAND/Post will typically connect to a network system, such as a
modem monitor or Tl-monitor or a computer, through the system’s printer
port and console. (These type of systems are typically referred to as “Element
Managers” or EMS because they control one class of element in the whole
network.)

An EM’s printer port will often produce interesting information such as the
failure of a modem or communication line. COMMAND/Post has a tool,
called ALFE (ALERT LOGIC FILTER EDITOR), that implementers use
through user friendly dialog screens, to construct an alert “filter.” (Figure 1)
The filter searches the message stream from the EM’s printer port and
recognizes important messages. The filter parses those messages and then
creates an “alert” in the COMMAND/Post system using data obtained from
the message. The filter assigns the alert a priority and an classification based
on the OS1 standard for network management. COMMAND/Post records the
actions of supervisors and operators and tracks how the alert is handled and
resolved.

COIviMAND/Post operators use terminal emulations windows to access the
EMS from their workstations. This allows operators to work on roblems that
might involve a dozen EM’s without leaving their seat. (Figure 2 P

110

ALFE

KeuWord d

An ALFE Screen - Figure 1.

Token Help 1

amtRAM
am!Swap
endld
errcode
e&actlonName
filename
filter
hostld
hours
noise
nrFiles
nrPaths
nr?rocesses
nvClass
nvType
OptionalToken
Pa”
pathname
PC1
pctfuil
pctgrowlh .

Set Help -

Ihome/uMetC
/AlfeBFilterl .fltr

\n newline U tab

T 1 -Monitor
Serial Comm.

Main frame
Application

LAN

Command/Post
Workstat ions

Element
Managers

Emulation Connections - Figure 2.

A

111

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1.2. The Auto Operations Requirement

It became apparent after the initial release of COMMAND/Post that our
prospective customers wanted to have the system support automated
operations. That is, to have COMMAND/Post not only detect alerts and
display them, but to also automatically take actions based on an alerts or alerts
received from a single EM, or on a combination of alerts from several EMS.

COMMAND/Post already had the ability to connect with the system consoles
for the various EMS. Therefore it seemed logical that if an automated
operations facility could be built we could send commands to the appropriate
EM, through the emulations, to get an EM to take the desired action.

The automated operations facility needed two parts. First, some kind of
detection mechanism that would allow the triggering alert, or combination of
alerts, to be recognized. Second, another mechanism that could have a
conversion with an EM’s console, as if it were a human operator, in order to
enter the commands necessary to get the EM to carry out the desired action.

A simple example of an automated operation, though no longer a problem
most networks, is automatic restart of polling on a communication line. A
Front End Processor (FEP) is polling several control units at remote sites
across a single wide area network line. One of the controllers goes off line
a period of time and the FEP automatically dro
polling list. When the controller came back on ine an operator would P

s that controller from the

command the FEP to add that controller back into the polling list. Under
COMMAND/Post automated operations, an EM monitoring that
communications line would report the failure of the control unit.

on

for R

COMMAND/Post filters would detect this as an alert, and would then trigger
an automatic operation to send a command to the FEP to add the controller
back to the list. If the controller failed to respond over a specified period of
time, a high-priority alert could be generated to inform the operator that a
situation had occurred that could not be remedied through auto operations.
(Figure 3)

The design of the alert detection and trigger mechanism took advantage of
COMMAND/Post’s relational database mechanisms for storing and accessing
data. A graphic window display (known as a selector) already existed to select
alerts. The implementer uses the selector and the mouse to click on certain
rules that describe the alert(s) to be shown on an alert display window. This
idea was extended to allow groups of alerts to be detected. When a specified
combination of alerts is detected instead of having the alert(s) appear in a
window a “trigger” would fire and the auto-operation would start. (Figure 4)

Once the detection facility was decided, the mechanism to allow the system to
carry on a conversation with an EM console was next. An augmented version
of REXX was chosen for that mechanism.

1.3. why REXX?

The decision to use REXX was based on several factors. The actual REXX

112

I

1 CU shutdown-FEP stoos Do1 1 ina

:omma;d Sent
to console for

rest art

Trigger

3

ALERT - Filter

COMMAND/Post

Restarting a Controller by Auto-Operation - Figure 3.

I SendMail A0 Trigger selector

Eopyright (c) 1993 Boole 8 Babbage, Inc. All Rights Reserved. Version 3.1 .a

I Select Group Display 1 File Ok. Help

I ------------ alerkalertld Ml $ELECTION CRITERIA

I

alerts.alertType:

Add Delete
ManualAlerts[- - any- -1

J alerts.cunentOperator:

ManualAlerts

alerktlmelieceived:
value since today O:lO.OO

- .

A Selector - Figure 4

113

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

product chosen was uni-REXX from the Workstation Group.

1.3.1. REXX was already an established language for auto-operations on Boole’s
mainframe products.

In addition to COMMAND/Post, Boole already had some main frame
products that incorporated auto-operations. They used REXX
extensively. It was decided there would be an advantage to keep the
auto-operations language consistent between the products.

Using REXX also allowed us to draw upon the experience of our main
frame programmers, and some of the extensions to the REXX language to
support database operations were based on insights provided by the
mamframe REXX group.

1.3.2. Some of the auto-operations scripts would be written by customers and a
language already familiar to IBM type main frame operators was desired.

Although COMMAND/Post is a Unix-based product, many of the
audience for it have their roots in the IBM culture where REXX is widely
used. By choosing a familiar language it was hoped there would be less

R

fear and resistance by customers to writing their own REXX scripts.

1.3.3. REXX’s ability to parse data strings would make analysis of messages coming
from the EM’S easier.

It was expected that much of the function of the scripts would be to
respond to messages coming from the EM systems. The REXX “parse”
factlity allows most of these messages to be handled without a lot of
programming. The “parse” statement is usually easy for even a novice
programmer to understand.

1.3.4. REJTs ability to pass commands to underlying environments makes it eary
to address COMMAND/Post’s database.

The extensions to the database were critical if we were to be able to write
easy to read scripts. The ADDRESS instruction allowed us pass SQL
command directly to the database. Also important was the ability of
REXX to create new variables of any type “on the fly” as data was
returned from the database. This eliminated the need for a rigid,
complicated structure (as used in “c” when getting data back from the
DB).

1.35 <;/Se of a “light, “interpretive language makes debugging easier for
non-professional users.

Though interpretive languages execute more slowly than compiled
languages they are often easier for the novice to debug since there is no .

114

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

compilation wait involved. Also unless the compiled language has a
sophisticated debugger, the source line is not displayed in association with
a run-time error. In addition, REXX has a built in trace feature which is
easily used.

The use of a “light” language that didn’t need extensive variable
declarations, etc. was also an advantage. While such languages become
increasingly difficult to maintain as a single program grows larger and
more structure is needed, because of the anticipated size of the scripts
(500 lines or less), that was not a concern.

1.4. External Access

The first change we made to REXX was to give it the capability to connect
with the EM’s. This was more complicated than simply opening a new file
descriptor to a new tty port. Connection to EM’s for filtering and emulation
are managed as resources by COMMAND/Post. A connection to a EM’s
system console might be used for a period of time by an operator via an
emulation, and later reassigned by the system for use by auto-operation via a
REXX program.

Connections were made from a program to a physical port using the UNIX A
socket/stream facility. The actual physical ports might be a tty, or, more likely
a port on a terminal server connected remotely, via LAN or WAN, from the
workstation where the REXX was actually executing. The resource
management system was designed to make the details of the actual connection
transparent to the connecting program. This means the REXX program need
only know a single name to invoke the connection.

In order to allow the REXX to connect through COMMAND/Post’s resource
management system several functions were added to the language by inserting
additional code into the REXX interpreter so it could use UNIX sockets and
streams:

<fd> = ao-targetConnect(<name>)

ao-targetClose(<fd>)

ao_targetComm(cfd>,cfunction>,<data>,<length>,<pos>)

The first function, ao targetconnect, requests the opening of a connection to a
named port. The name implies more than simply a physical port. It also
implies a pathway to get there and, in some cases, a terminal emulation
appropriate to the external target system on the other side of the port. These
are defined externally to REXX by COMMAND/Post’s system management
faciiity.

A file descriptor, or more a propriatel a “handle” is returned by
ao targetconnect to identi ff the path or future communications calls. f!

115

Fri, April 29,1994 Using REXX in a Unix Environment to Manage Network

The ao targetclose function simply reverses the connect function closing
down tlie path. The handle from ao_targetConnect is the single argument to
80 targetclose.

The third function, ao targetcomm, actually carries out the transfer of data
between the REXX program and the target system.

1.4.1. Application Program Interface

When it came to actually talking to the target system we were faced with
an additional problem. Usually the device a REXX EXEC needs to talk
to is a system console. That means the program would be responding to
the commands we sent it with data (including our own full duplex echo) as
well as occasionally sending out, from our point of view, random lines of
data as the result of activity on the system. How could we develop an
interface for REXX that would allow us to send data at will and handle
messages from the target when they came in at any time? Turning to an
interrupt model, where we would sit in a wait state until an incommg
message would trigger a designated REXX function seemed to be too
complicated for easy use by most of our customers, especially when more
than one target system might be involved in a single REXX program. R
Instead we decided to use an Application Programming Interface (API) to
interact with the tar et.
defined by IBM as fl

The API we developed was similar to that
t e “IBM PC 3270 Emulation Program, Entry Level,

High-Level Language Application Program Interface” or EEHLIAPI.
Where the IBM was targeted to a 3270 terminal interface, our API widens
the definition to cover terminals that do not use field positioning.

The API operates much like a
pseudo-screen is created (whit Ii

erson sitting at the terminal console. A
does not display on the

COMMAND/Post workstation monitor), and the REXX program uses
functions defined in the API to interact with this screen. Some functions
allow the entire screen to be captured as an array and transferred back
into a REXX variable for processing. Other functions allow a portion of a
screen to be captured, or in the case of a terminal supporting fields, a field
to be captured. Other functions allow data to be sent to the screen as if
was coming from the keyboard. There are a number functions dedicated
to positiomng the cursor and searching the screen, or fields, for text. A
few give status information, including the height and width of the screen.

The API also allows for an interrupt driven capabili for situations where
a simpler set of calls cannot handle the exchange. TX e REXX program
waits until new data arrives on the pseudo-screen and then is released so it
can make additional calls to observe how the screen has changed.

All calls to the API interface are made through the ao targetcomm
ftinction described above. The “fd” argument containsThe handle for the
particular target system involved, and the “function” argument contains the
number of the API function that will be used. The “data”, “length”, and
“pas” arguments definitions vary based on the function call. In general,
“data” is data being read or written to the pseudo screen. “Length” is the

116

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

length of that data string. And “pas” is the position involved when data is
written or read. The API views the screen as an array of characters (row
one, followed by row two, etc.) and the position is a value pointing to that
array.

Using the API model to connect with the target system has a number of
advantages. First, as noted above, it removes the need for an interrupt
type interface when only simple communications are involved. -When only
a single thread of communication is involved it is relatively easy to create
a loop in REXX to read the screen, write to it, read the screen again,
identify what has changed and then act on the new data.

Another advantage is the interface allows some measure of emulation
independence. That is, a REXX script can be designed that will operate
with either a EM running a VT-320 interface or a IBM3151. Then the
only change needed between the two would be in the definition of the
pathway during the configuration step external to REXX. The user would
define the path as using a VT-100 API interface instead of an IBM3151.

Despite the interface, there are some restrictions on how transparently a
REXX program can be written. Some terminals support the use of
“fields.” A REXX program that made use of the API field related
functions to interact wrth a Tandem 6539 would not work with a VT-100, R
because it does not support fields.

1.5. Parameters

The REXX interpreter was also augmented to accept command line
arguments that could be passed in the the REXX programs as parameters.
The command line to the left of a “--‘I remained the standard uni-REXX
command line. The part to the right represented parameters passed to the
REXX program. Argument flags (items starting with a “-‘I) became variable
names in the program filled with the values that followed them. The following
command line:

ncrx -- -customerName "Fred"

would cause the REXX program to start execution with a variable called
“customerName” initialized to the value of “Fred”. This allowed the triggers to
pass useful information to a REXX program. Standard information passed
included the number of alerts that caused the trigger to fire and the
identification numbers of those alerts.

1.6. Database Interface

We aiso wanted the REXX auto-operations programs to be able to access the
COMMAND/Post database so they could create, query, update, and delete
the alerts the system maintained.

. COMMAND/Post uses a relational database that is divided over two

117

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

dataserver programs using the Sybase “open server” model. The primary
database 1s accessed through the standard Sybase dataserver. Temporary high
activity tables are assigned to the “Event Handler” server: a memory resident
server of our own design.

Access to either server is via REXX’s ADDRESS instruction. Addressing
NCDB connects the REXX program to the primary sybase dataserver, using
“ALERTS” connects it to the Event Handler. To interact with either the
programmer need only code an SQL command, or use a stored procedure (a
Sybase term for SQL routines maintained in the dataserver) in the address
command. The success of the command can be evaluated by looking at the
special REXX variable “sqlCode”.

While, for the most part, addressing the dataservers via this command is
straight-forward, a few SQL commands represent a problem. For example,
“SELECT *” command may return row after row of data from the table, each
row with many individual data items. Each item can be of a variety of data
types. Here’s where REXX’s ability to create variables on the fly and have
variables types change make it an excellent choice of our application. As a
data item is returned, let say the time field for particular alert, a REXX
variable named “TIME’ is created, if it does already exist. It is filled with the
text representation of the time. The same thing for inte ers or for character
strings (which the database can store in several varieties ‘5 The programmer
need not immediately be concerned with making sure the variable type
matches what’s coming back from the database.

Multiple rows are handled by returning one row at a time and havin
“fetch” command. The program can use to indicate that it is finishe B

a special
with the

current row and is ready to receive the next. Values for the new row are
written over and into the same variables used by the last row. If all rows are
exhausted the “sqlCode” variable returns an error value (non-zero). If there is
no need for additional pending row a special “cancel” command can be used to
drop them.

A typical code fragment to print the item “alertId” from the “ActiveAlert” table
might be:

address NCDB "select alertId from activeAlertsV8
if(sqlCode = 0)then

do forever
address NCDB *'fetch@'
if(sqlCode <> 0) then

leave
else

say alertId
end

end

A

One limitation created by this architecture is that all values returned by a
“select” statement must have some associated name for creation of the
variable. This means that an SQL statement that used some function (like

. SUM) to create a value that would not have a name associated with it must be

118

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

written in such a way that it is forced into a variable name. For example:

select total = sum(occurrences) from activeAlerts

instead of

select sum(occurrences) from activeAlerts

- To ?ake common o
reqmre multiple tab P

erations, like creating an alert, (which would normally
e inserts) easier, a number of stored procedure are

included in the database. This means that typically only a single “address”
clause is needed for even a fairly complex database operation.

- .

1.7. Other Uses of REXX in the Product.

One of the bonuses of implementing REXX as our auto-operations language
was that we could use it for general programming. We have a large library of
scripts (mostly written in Bourne or C shell) used for installation and
maintenance of the product. When these scripts interacted with the database
they had to first create a second file that would act as input to the Sybase’s
Interactive SQL program (ISQL). Then they had to start ISQL directing the R
second file to the standard input, and finally monitor the standard output for
errors. This convoluted approach made the script hard to read. It also made
isolating a particular SQL statement that failed difficult since the script was
not feeding the commands to ISQL one by one.

Our REXX, with the ability to address the server through the ADDRESS
instruction has simplified this problem. Since the REXX can address the
database directly it is easier to write and test the script/program. Errors are
also easier to detect and handle.

1.8. Results

Over 100 sites now use COMMAND/Post with the automated operations
facility. A majority of the customers involved have decided to write their own
custom auto-operations scripts which lessens the load on our support staff.
We are pleased with our decision to use REXX for auto-ooeratlons.

119

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1.9. Bibliography

COMMAND/Post How to Guide, Release 3.0, Boole and Babbage Network
Systems, San Jose California, 1993.

Programmers Guide: High Level Language Application Program Interface,
IBM Corporation, Austin Texas, 1987.

_ - .

A FUXX CookBook for COMMAND/Post, Boole and Babbage Network
Systems, Mt. Laurel New Jersey, 1993.

uni-REXX Reference Manual, The Workstation Group, Rosemont Illinois,
1991.

R

126

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1.10. Glossary

ALFE - Alert Logic Filter Editor - The facility in COMMAND/Post used to
construct a “filter”.

API - Application Program Interface - The interface that allows REXX and C
based programs to interact with COMMAND/Post emulations. _ -~
Dataserver - A process that manages and provides access to a database.

EM - Element Managers - Network Control and Monitoring systems that
manage a domain of network elements like modems, communication lines, etc.

Event Handler - COMMAND/Post primary memory resident dataserver.

EXEC - A REXX rogram for COMMAND/Post that is part of the
auto-operations su E system.

IBM 3151- IBM async terminal.

IBM 3270 - IBM sync terminal.

Filter - A program in COMMAND/Post which parses a stream of data, usually R
from some external source, looking for messages. When a message is found
the filter created an alert for the COMMAND/Post database.

Open Server - A database design that allows dataservers from multiple
vendors to operate together.

RDBS - Relational Database System - A database designed to adhere to
relational principles.

Shell - A Unix command interpreter.

Shell Script - A program that is interpreted by a Unix C or Bourne shell.

SQL - A 3rd generation database manipulation language.

Sybase - A RDBS product.

Tandem 6539 - Tandem async terminal

Unix - Operating System on which COMMAND/Post runs.

VT-100 - VT-320 - DEC async terminals

121

I
Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

1.11. APPENDIX: Sample COMMAND/Post REXX program.

#!/usr/nc/bin/ncrx -s
,****.*****.~,t**tt***.~~*~~~~..~~~~~~~~~~~~~~~~*~~~.~*~~~~~

* REXX program to perform sinple paging. The OS1 Severity
* of the fi’rst triggering alert will be sent to the pager.
t

*

t

*

*

*

*

*

c

*

*

*

*

*

*

*

*

*

*

t

*

*

*

*

*

*

*

*

t

This program does the follouing:

>connects to a tool called 1pagerModem18 which is
assused to be an “AT” mode modem

>Tnitializes the modem for word responses.
>Sends touchtone dial sequence uhich leaves the modem

in comnand mode
>Sends VINYL fol lowed by WI
>Looks at the first underlying alert passed in and gets

the OSISeverity value from the data base.
>Sends OSTSeverity followed by W8 out to the pager.
Waits 5 seconds for repeat
>Sends final W1 to force posting of message
>Does a 81hangup1’
>Disconnects from modem.

The following variables should be passed in from the trigger:
pagerModem - Access path of the modem.
PIN - Users pin n&w.
underlyingAlerts (optional)
alertcount (option)

Tf no alertcount or underLying alerts are available the value
99!W uill be sent to the pager.

Note: Triggering Alerts must be forwarded to the database so
that the Severity can be obtained.

/* Get the OS1 severity from the database */

if alertcount (> HALERTCCRJNTi~ then do
cnt = 1
alertId = underlyingAlerts.cnt
address NCDg %elect OSlSeverity from alerts where ‘I,
alertId’* = alertId*’
if(sqlCode ** When do

say “Could not get Severity from database”
exit

end

- .

R

address NCDg “fetchO’
message = OSlSeverity

end
else

122

Fri, April 29, 1994 Using REXX in a Unix Environment to Manage Network

message E lloopgll

/* Connect to the modem */

nl 5 lloallx

path = ao~targetConnect(pagef%deis)
if rc \= AON-noError then do

say “failed to make cotmection to” pager
exit

end

/* Get the dimensions of the wlation screen and
calculate the Presentation Space size */

string = llA1l
r = ao-targetCom(path, 22, string, 1, 0)
colums = delstr(delstr(string, 161, 0, 13)
row = delstr(delstr(string, 141, 0, 11)
PSsize = colums l rows

/* Start the conversation uith the modem */

A

if modemSend(path, @BATVl%l “OK”) = 1 then ,
exit

/* Dial the service */

if modemSend(path, ~~ATDT9,18007597243GI;~~n1, “CONNECT”) = 1 then
exit

/* Send the PIN l /

if mcdemSend(path, 08ATDT81PINW;1%l, “OK”) = 1 then
exit

/* Send the message (OS1 Severity) */

if modemSend(path, ~~ATDT%essageW;%l, 810K”) = 1 then
exit

address UNIX “sleep 5”

/* Clean up l /

if modemSend(path, 80ATDT#;n11’, WK”) = 1 then
exit

if modemSend(path, uATHg~nl, %K”) = 1 then
exit -

/* Disconnect fran the path l /

r F ao-targetClose(path1

123

Fri, April 29, 1994

exit

Using FUXX in a Unix Environment to Manage Network

,****t*****t************t***

* modemSend
*
* sends the contents of string to modem and checks that the
* response from the modem contains the contents of pattern
*

modemSend:
arg path, string, pattern

Len = tengthfstring)

/* Find the cursors current location on the screen */

r = ao-targetComn(path, 7, 0, cursor, 0)
if rc \= AON-noError then do
say Van’t find cursor: rc =I’ rc
return 1

end

/* Send the comand to the modem */

r = ao-targetcomfpath, 15, string, ten, 01
if rc \= AON-noError then do
say 14Send failed: rc = 3-c
return 1

end

/* Loop ten times waiting each time 2 seconds for a response. */

do 10
address UNIX “sleep 2”

/* Lodk for response following cursor position */

r = ao-tsrgetComn(path, 8, string, (PSsize - cursor), cursor)
if rc \= AON-noError then do

say “Send failed on check: rc =(I rc
return 1

end

/* Search for a the expected pattern */

if postpattern, string) \= 0 then do
return 0

end --
end

A

-.

say “did not find” pattern
4 return 1

124

