
DEFECT REMOVAL TECHNIQUES FOR REXX

PAT MEEHAN AND PAUL HEANEY

150

Sect Removal Techniques and their Effectiveness for REXX
Applications

Patrick A Meehan IBM JISL PRGS Lab, Dublin, Ireland

Paul IIeaney DELPHI Software Limited, Dublin, Ireland

--____.-
Abstract

Mnior focus has been put on the reliability of soft-
\+~rr.e wifhin thr last j&v years resulting in various
ottcmyts to improve that reliability and to produce
.W~IWWC with close to zero-defect (six-sigma). Little
effort ,tas been expended to measure the relative
eJi+ctisencss of the different techniques in a CCR-
1rnllctlJhshion.

7’hi.r paper foclrces on the experiences of de]kct
remo4 of a component of an existing REXX
product and the subsequent compariron in a more
contrc:?Icd fashion between different method..r of
drficr rrmovaf for a new REXX project.

T/W main ,focu.s of the paper will be on the measured
efjcctiveness of different defect removal techniques
and CIII their suitability to an application I,!zat has
alrcadv been or will be developed in the RLXX Ian-
guage with the overall objective of producing close to
zero defect RILYX applications.

-- _. --- ---
Intraduction

Many different philosophies exist as to the best way
of CI~slJliJlg high reliability software systems.
lnspcctions and/or reviews of the different develop-
mcnt phases, various forms of code iesting and
stand.~rtls by ~llich the development should
proceed often figure among these approaches.
‘i‘hcrc has however been little attempt to tneasure
the effectiveness of the different techniques in a
controlled fashion.

This paper describes work undertaken by the
authors and other participants in an attempt to
measure the effectiveness of different dzfcct removal
techniques during the coding phase. The incentive
to carry ou? this research was based on our experi-
ence with the development of a Prograr!] Product
component. This work involved the &vclopment
cf key performance changes which varied in com-
plexity from basic performance changes to complex
network changes. There were a number of key ele-
ments in this del:Jopment effort.

Performance changes were prototyped at an early
stage of the design process to gain some early meas-
urements on their benefit. The resultant code was
subjected to some extensive unit testing. Parallel
reviews of the entire code were conducted. Results
from the reviews were carefully analyscd and in
some instances the subject code was seeded in an
attempt to measure the ef&ctiveness of ;.he parallel
reviews. In more complex parts of the dcvelop-
ment, informal vetifcation by the owner of the
code was carried out. The performance component
has handed over to formal Test phase will] a defect
residue of 2.6 defects per KLOC. ‘l‘his low residue
compared very well to other components and was
less than the average defect residue for projects
developed with the Clcanroom techniques (1). The
defects that were discovered during formal test were
typically of a trivial nature and were easy to fix.

These results suggested that the techniques or at
least some of the techniques practiced were very
successful. However, it wasn’t clear as to which was
more effective and whether some combination of

1 (C) Copyright International Uusiness Machines Corporation 1993

Dcfwf Removal Techniques and their ElTectiveness Tar REXX Applications 1
15;.

the techniques might be even more effective than
others. In order to determine their effectiveness, it
was necessary to set up an experiment and measure
their efliciencies in a more controlled fashion.

The objrctive of the experiment was to measure a
selection of different techniques on a piece of
subject code under a variety of different metrics.
The selection was based on techniques typically
practiced in software development and are
descrihcd below.

A small REXX project to manage the reporting of
1”l’R (Problem Tracking Rep?&) was designed
ba& on well known requirements, ;he (es:ltant
design was reviewed and the code was developed
(3K). The resultant code then became the subject
of the experiment.

Different Methods

A nurnbcr of different techniques were employed in
order to establish their effectiveness in removing
defects from the established REXX program. The
exact same REX.% code was the subject of all the
trchniqucs sclectcd. The following example
(plcasc refer to Figure 1 on page 3) which is a
srlrctcd piece of code from the developed REXX
reporting project serves to explain the different
rrlct hods used and the manner of their use from a
ItF,XX perspective.

‘I’hc inpills to all the techniques were :

l Snurcc code

l Intended function

l 1)csign document

I’or the i*urpzses of easy reference, each decision
with the section of code is referenced on the right
hand side of the decision (e.g. B.2.3).

Unit Testing

t.!nit tcsiing can take on many different forms from
the basic statement coverage to the more rigorous
form of multiple-condition based unit testing and
can vary significantly in their success rates (2).

Decision based Unit Testing

The purpose of this form of testing was to ensure
that each decision within the code took on a true
and false outcome and then checking that the result
was valid. This was carried out by someone other
than the code author but who was involved in the
original design

The SIGNAL ON NOVALUE and SIGNAL ON
SYNTAX instructions were also added to the code
in order to detect uninitialised variables and inter-
pretation errors and NOVALUE and SYNTAX
routines were inserted to trap these errors.

In general, where there are n decisions then this
would mean 2% number of test scenarios.
However, the number of actual test casts is usually
less than this because the different decisions are
typically not all independent of each oth:r and even
where they are independent of each other they can
sometimes co-exist within the same tect case.

From the example in the figure (please rcfcr to
Figure 1 on page 3), there are 4 decisions. In order
for each decision ‘.a take on a false and true
outcome this would have required the following set
of 8 potential test scenarios.

1. b.2, b.2, b.2.1, b.2.1’, b.2.2, b.2.2’, b.2.3, b.2.3’

where the prime indicates the false outcome of the
decisions. On closer examination, it becomes
apparent that all of the test scenarios of the form
b.2.x’ can be satisfied by the scenario b.2.y where y
7 = x. In addition b.2 must co-exist with any of
the list of b.2.1, b.2.2 and b.2.3 so it doesn’t have
to exist as a separate test case.

So we are really left with the following set of 4 test
cases:

1. b.2’

2. b.2.1, b.2

3. b.2.2, b.2

4. b.2.3, b.2

This set of test cases discovered 2 defects in the
selected piece of code where the keywords SLln-
TRACT and ADD were not included in quotes. It’s
of interest to note that these would equally have
been found through the use of the SIGNAL ON
NOVALUE instruction.

152

/+ contd... *I
-___. L

IT:gure 1. Sample of Subject REXX Code - Input to all techniques.

MA NAGE-PCFRAISE:
array = ‘RAISE’

Sclcct
When type = ‘ACTED’ then do

/* Valid Acted and either it was previously OPENed or it was ACTED on..+/
/* brat the REL info is different or it was logged as Rejected..........*/
I* Decision . B.2 */

If ret 7 = ‘NOT:,
& (‘WORD’(p.ptr-no, 1) = ‘OPEN’,
) (‘WORD’(p.ptr-no,l) = ‘ACTED’ & ‘WORD’(p.ptr-no,3) 1 = ret)),
((‘WORD’(p.ptr-no,‘) = ‘REJlX:T’),
then do

/* Decision ..,......*....*........*.. B.2.1*/
If ‘WORD’(p.ptr-no, 1) = ‘OPEN’ then

Call addsub-operator ‘WORD’(p.ptgo,4) 2 ‘SUBTRACT’ array
/* Decision . B.2.2’1

If ‘WORD’(p.ptr-no, 1) = ‘REJECT’ then
Call addsub-operator WORD’(p.ptr-no,4) 0 ‘S’C’BTRACT’ array

/ + Decision... ..,., , ...*...*.. B.2.3’1
If ‘WORD’(p.ptr-no,l) = ‘ACTED’ then

Call addsub-operator ‘WORD’@ptr_no,4) 3 SUBTRACT array
Call addsub-operator ymd-open 3 ADD array
End

Otherwise nop
ITnd

Multiple Condition Based Unit
Testing

‘I‘ypically, the code author would unit test his/her
coclc and for this reason the subject code was unit
tested by the code author along the lines of mul-
tiplc condition based unit testing.

Whereas decision based unit testing just focuses on
the decision outcome, multiple condition based
unit testing focuses on the actual conditions within
the decision by ensuring that all possible condition
combinations within a decision are exercised.

Iior example, decision b.2 has 5 different conditions
within it and theoretically there are 2 to the power
of 5 test scenarios to cover all condition combina-
tions (32). Decisions b.2.1, b.2.2 and b.2.3 have
only 1 condition within each and so are handled in

the same fashion as with decision based unit
testing.

On closer examination of the 5 conditions with
decision 6.2 it becomes apparent that only a certain
subset are possible anyway. For example, the
expression WORIl(p.ptr-no,/) which wc refer to
as the PTR Status can have only 1 value at a time.
If we name the 3 occurrences of this expression as
x2, x3 and x.5 then the following are the only 4
valid combinations

(x2,x3’,xS), (x2/,x3,x5’), (x2’,x3’,x5), (x2’,xY,x5’)

where the prime (‘) indicates the false outcome of
the expression. If we name the other conditions in
decision b.2 as xl and x4 then it is clear that these
c<an take on the following 4 valid combinations

(x1,x4), (xl’,x4), (xl’,x4’) and (x1,x4’)

I)efect Removal Techniques and their Effectiveness for REXX Applications 3
153

Therefore the total number of test cases becomes 4
times 4 or I6 valid test cases which is only half of
the number of original scenarios.

Note: Decisions b.2.1 , b.2.2 and b.2.3 are auto-
matically covered by these test cases and no further
test casts are required.

This set of test cases discovered the 2 defects
already mentioned under decision based unit testing
(Test cast xl,x2’,x3,~4,~5’). In addition, they
uncovered a further defect through the following
test cast combination of (xl’,x2’,~3’,~4’,~5) which
actually rryulted in condition b.2.2 being executed
when in fact this particular section of code sliould
not have been entered at all. The coding error was
due to the fact that whenever x5 occurred (PTR
Status = ‘REJECT’) regardless of the other condi-
tions x I ,x2,x3 and x4, the underlying code was exe-
cuted whereas it should only have been executed
when x5 AND xl occurred. The error arose because
the incol :ect placement of parenthesis in the deci-
sion (Plca~c refer to Figure 2 on page 6).

‘I’his dcfccf was not detected under the decision
bnscd testing because of it doesn’t embrace the dif-
fercnt condition combinations within a decision
and underlines the inadequacy of the decision based
approach.

Verification of REXX Code

Another form of defect removal which has gained
some prominence recently particularly since it
forms a significant part of the entire Cleanroom
methodology is that of verification. As part of the
experiment, code verification was undertaken by
the code author. This activity took place some 3
months before the multi-condition based unit
trsting in order to eliminate any potential bias due
to the fact that the same person carried out both
activities.

L’erification is a means of expressing the function of
a manageable section of code in an unambiguous
fishion and then exercising some intellectual rea-
soning :&bout the derived function and the original
intended function.

The intended function was documented within the
actual code when the code was originally written.

A key part of verification was that the code was not
executed. Verification was conducted by estab-

lishing the derived function for each main section
of code within a Procedure and then cascading
towards an derived function for the entire Proce-
dure and ultimately an overall derived function for
the entire REXX program. The derived function
should be sequence free and loop free because this
makes it more understandable and more unlike the
original code.

Some people advocate a more formal description of
the program function; it is our experience that the
choice of description for REXX code depends
largely on the nature of the code. The authors
believe that is important to describe the derived
function in a more conceptual fashion and that it is
important to divorce it from the actual code details
as much as is possible. The use of lists, matrices,
and other mathematical notation were considered
invaluable.

The :<ey to verif;,cation of developed code % a com-
plete understanding of exactly what the code is
doi7g. It is recommended that even where one
may t&r& that they know how a particular REXX
construct Oi operating system command works, one -
should still consult the relevant documentation to
verify that understanding. Once that understanding
is established, then it is relatively easy to verify it
against the intention.

The example (please refer to Figure 2 on page 6)
shown is the derived Program Function for two
sections of code in a Procedure (13.1 and B.2).

Note: Any non-obvious notation is described sep-
arately in the form of specification functions (not
shown here).

Program Function B.2 represents the subject code
shown in Figure 1 on page 3. The Program Func-
tions were then analysed against the intended func-
tion; the intended function for the entire procedure
is shown in Figure 3 on page 5.

In this example, the verification discovered all of
the defects mentioned so far. A further defect
becomes clear when B.2 and B.1 are examined
together. From B-1 it is clear that when a new
PTR is OPENed that it is added to the weckid cor-
responding to its OPEN date. IIowever in B.2, we
see that when the PTR was already ACTED on
but the release information has subsequently
changed, the occurrence is deleted from the weekid
corresponding to the ACTED date and not from
the weekid corresponding to the OPEN date.

4 154

I

-

Even though the relevant section of code would selecting the right data which is made much more
have been exercised in both types of unit testing, difticult particularly (as in this case) where the data
this defect was not found because the weekid for in question (ACTED date) is not part of a condi-
the test case would have been the same for both tion within a decision. If the data had been part of
the ACTED and OPEN dates; even though this is a condition then it is more probable, but not defi-
more probable it wouldn’t always be the case. This nite, that the defect would have been discovered
illustrates the dependence of unit testing on through unit testing.

;* INTENDED FUNCTION for MANAGE-PCFRAISE */

This routine is used to manage an array which contains all of the
information relating to PTRs raised during each week. This array is
subsequently used to fill the file PCFR .\ISE TABLE. The rows in the
array should be deiied according to lhe following criteria.

ROW Information

2 Number of PTRs that are still OPENed during this particular weekid
3 Number of PTRs OPENed during this weekid which are now ACTED
4 Number of PTRs OPENed during this weekid which are now

CLOSED but not due to an injected fix
5 Number of PTRs OPENed during this weekid which are now

CLOSED due to an injected fix
6 Number of PTRs OPENed during this weekid which are now REIECTed
7 Total number of PTRs OPENed during this weekid which is

the same as the sum of rows 2,3,4,5 and 6

l‘hc routine should take the new information for a PTR (established
earlier) and ensure that the changes are applied to the existing array
information. This should be done by calling a separate routine,
ADDSUB-OPERATOR, with the correct parameters; these are described in
its Intended Function. The routine ADDSUB-OPERATOR makes
the actual changes. In general, new PTR information can mean that
previous information should be deleted and new information added.

Fipurc 3. Intended Function for Sample Subject REXX Code - Input to all techniques.

Parallel Reviews

A number of REXX developers (3) with a cross-
section of REXX and VM experience were
requested to review the subject code in parallel with
the objective of detecting the maximum number of
logic defects. They were provided with the design
of the reporting system and would have rev-iewed
the code subject to a set of established REXX and
VM coding standards. Apart from this, the
reviewers were free to use any other defect
detection methods. On the example piece of code
(please refer to Figure 1 on page 3), the same 2
defects that were found under decision based unit
testing were also found but no other additional
dcfccta were found on this section of code.

Reviews typically suffer from a lack of structure
and can be undisciplined; they arc best described as
a type of black box activity in the sense that we
seldom know how they actually are conducted as
this is usually left to the discretion of the reviewer.

Overall Results

The results from the experiment have been ana-
lysed on a number of different fronts. The graphs
(Figure 4 on page 7) illustrate the results for the
four primary metrics. Each defect was classified on

Defect. Removal Techniques and their Electiveness for REXX Applications 5
155

completion of the entire exercise according to its
probability of occurrence, the severity from 1 (high)
to 4 (low) and its complexity from 1 (low) to
I O(high). In addition, the probability- severity
metric was defined as the sum of all the probability
sc:vcrity ratios and the overall complexity number
as the sum of all the complexity numbers.

Verification of the REXX has proven to be very
successful claiming 61 defects out of a total number
of 64 that were detected by aJl of the techniques.
‘I’hc code reviews were the least successful (11
dcfccts) with the success of the unit testing varying
according. 1.0 the type of unit testing conducted.
‘I’hc prol,ability-severity metric underlrnes the fact
that the \:erifrcation also tended to detect the more
scvcrc and the higher probability type of defects
with a value of 10.6 compared to 6.1 for mulli-
ccmdition unit testing. Even though the difference
in the number of defects between these two tcch-
niqucs was 17 this deficit accounted for a
probability-severity metric of 4.5. The same trends
are cvidcnced w111:n WC look at the complexity
number for each technique highlighting the fact
that the verification is better at finding the more
complex defects. The time taken for each tech-
niquc showed little variation except for the multi-
condilion unit testing which took up significantly
more time.

It’s of some interest to look at the defect break-
down. Each defect was classified under one of 4
headings representing the effect of the defect as
follows. (Please refer to the graph Figure 5 on
page 8j.

/* Derived program Function B 1 .)I
(1’1‘11 is OPEN)

(J’TR was previously unknown) -- > + 2 (open date)

/* JIcrived program Function B2 . */
(J’TR is ACTED)

(P.I’R was previously OPEN) -- >
+ ?3? (open date), -2 (previous open date)

(I’ I’R was previously ACTED & the Release info has changed) -- >
+ ?3? (open date), -?3? (previous acted date)

(J’TR was previously REJECTed) -- >
+ ?3? (open date), 4 (previous 3pen date)

I’igurc 2. Ih-ived Program Function for Sample Subject REXX Code - Verification output

l A maximum of 7 defects were due tc seeds
placed in the code.

l Fume dcfecta were as a result of eithe!- REXX
Novalue or Syntax errors

l Other defects resulted in incorrect message han-
;!i?g

l The remaining defects resulted in incorrect
results occurring and arc difJicult to classify
further.

All of the techniques were reasonably successful at
locating the Novalue/Syntax and the messaging
defects. These would typically be classified in the
eary to find category. Jlowever when you look at
the more complex defects which sometimes gave
rise to subtly incorrect outcomes, the reviews and
then the unit testing and fitially the verification
were successively more successful at detecting them.
Similarly when you look at the success at removing
the seeds that were placed in the code, the same
trend emerges with verification finding all 7 seeds
and reviews only finding one of the seeds.

Finally, the VENN diagram illustrates the unique-
ness and commonality of defects across the three
most successful techniques. All of the three had
some uniqueness varying from 1 for each unit
testing type to a significant 15 for verification.
There were 21 defects which were common to all of
the three techniques.

70

60

50

VI

2 40

Tii
cl 3c

2c

1c

C

/ -

I --

I -

I-

1 --

I-
im-lRsotbn DodDIon u/r

WultHhnd U/l RIvra

40

30

n
P

1
- 20

Q)
E

--

t-

10

C

vomotim D&dotl u/T

uulu-cond u/l RdM

J5gure 4. Results of Analysis

12

6

400

300

200

100

C

Hriflmtkwl Ddolon u/r

YultI-cord u/r Rwlowo

JIefect Removal Techniques and their EfJ’ectiveness for REXX Applications 7

157

J;‘igurc 5. Jlesults of Analysis

8

Defect Breskdown

“I

thnaplnp Inwrrmot Rnult

Verification Multi-Condition
U/T

U/T

Concluding Remarks

Verification should be embraced as a defect
removal technique as it has been conclusively
shown to be very effective on the subject REXX
code and is not as time consuming as expected.
REXX as a language is suited to verification in the
sense that it is typically easy to understand its dif-
ferent instructions and functions. On the other
hand its loose data typing can make it difficult to
fully describe the resultant state of the data. For
the purposes of subsequent ~~erification, the use of
\rcll-structured REXX code makes the task that
much easier. Avoidance of REXX iiow rlterations
like I’T‘I<RATE and LEAVE makes the verification
simpler. The verification exercise has also shown
the importance of limiting the extent of variables to
where they are needed. This can be accomplished
easily with the PROCEDURE instruction which
protects all existing variables and fully restores
them on return from the PROCEDURE. Only
those that need to be available can be done through
the EXPOSE option. In fact all but one of the
defects which were not found by verification were
due to the fact that variables were not protected in
the fashion described. If one limits the extent of
variables as much as possible then the task of
defining the program function for the entire
program is greatly simplified and the use of the
11XI’OSE option on all Procedures is an easy way
of knowing what variables are not protected.

Even though CMS Pipelines, which implement the
pipeline concept under CMS, were not part of the

subject code, their use would also appear to benefit
the overall verification process in REXX. Pipelines
enable complex tasks to be split into small simple
robust self contained programs which would be
easier to verify.

Even where one still wants to pursue the unit
testing path and wants to do it in a rigorous
fashion like that described for multi-condition
based unit testing, it is our experience (in hindsight)
that in fact the derived Program functions which
were done as part of verification are an an excellent
route to pursue. The program functions typically
remove all redundancy, just state the code
outcome, are much more understandable than the
code itself and hence lend themselves to the task of
deftig test cases to cover the multi-condition
testing rationale.

The other techniques of unit testing and reviews
were successively less and less successful. The
testing tends to be highly dependent tin selecting
the right data, cannot satisfactorily deal with
mZng function and lacks the intellectual control -
of verification. Reviews are typically black box
affairs with the process of carrying out the reviews
left largely up to the reviewers and if carried out
should be changed to ensure that they embrace vcr-
ification.

Measurement of the different techniques has pro-
vided some invaluable information and shows con-
clusively the effectiveness of the verification
technique and not at the expense of overall produc-
tivity.

JIefeci Jlemoval Techniques and their Effectiveness for REXX Applications 9
159

