
DESIGN OF THE E~RGING REXX STANDARD 

BUNMARKS 
ANSI 



This talk is in four sections. 

The "Dull but informative" 
committee, mandate, 

section is about the history of the 
membership and progress so far. 

The "Rexx users won't care" 
writing the definition. 

section is about technical aspects of 

"What is new about errors" 
there. 

will explain the changes and extensions 

"What is new about Command I/O" will explain our attempt to provide 
uniformity in the way data is exchanged across the interface between 
Rexx and system commands. 

At the 1990 Rexx symposium in Stanford, a panel of Rexx experts was 
asked "Would a standard for Rexx be a good thing, and would you 
contribute to creating one?". 
there, 

Based on the strong support expressed 
a proposal was made and the first meeting of the X3J18 

committee was held in January 1991. 

The proposal that X3 voted on when setting up the committee had this 
key-paragraph: 

"The scope of the standard will be the second edition of the Cowlishaw 
book, plus consideration of implementation experience. The scope may be 
altered as necessary to promote portability, reliability, 
maintainability and efficient execution of REXX programs on a variety of 
computing systems." 

Note that this mandate doesn't allow the committee to add things just 
because users would like them. 
have been frequently requested, 

While we all know of extensions that 
like date conversions and new ways of 

using stemmed variables, the committee doesn't 
first standard. 

consider them for the 
(Although we do have separate discussions with 

to a subsequent standard.) 
a view 

We have just had our ninth meeting. 
typically is about ten. 

The attendance has varied, 

Membership is a big investment. . .- - . The membership fee is only 300 dollars 
a year but the cost lies in travel and in the member's time. The four 
meetings a year are spread over the USA (to even out costs) and each 
lasts several days. In theory , -there is even more cost in-the time 
member's spend on X3J18 between meetings but in practice they are all 
professionals with other jobs, 
that extra contribution. 

making it difficult for them to provide 

but 

The balance of the committee has more participants that are primarily 
implementers than participants that are solely users. 
implementers also represent users, 

Of course, the 

the user community. 
but we would like more members from 

The work has progressed to the point where we have most of a draft of 
the stand&rd, although there is a lot of detail work to do. 
two extremes of looking at that: 

There are 
"How can so little be done in two 

years?" (if you count elapsed time) or "A great result for a month's 
work" (if you only count the meetings). The truth, no doubt, is 

147 



somewhere in between. 

The audience for a standard comprises implementers and people who want 
to validate implementations. Such people understand Rexx so the 
standard doesn't have to be a tutorial; it does need to be rigorous 
and complete. The actual users of Rexx are not so interested in how 
the draft is written, only in its content, which will be reflected in 
the manuals for users. 

There are some languages, like VDL and Z, which were specifically 
designed for writing formal definitions. One of these could have been 
used to write the standard, but we chose to write much of the standard 
in Rexx. 

Superficially this is circular, using a language to define itself, but 
in practice it is a bootstrapping exercise. The parts not written 
in Rexx provide the foundation for parts which are written in Rexx. 

The syntax of programs can be specified using grammars in the familiar 
BNF notation. We use one for the tokens and one for the higher level 
constructs. There is an interaction between these grammars because of 
the detection of keywords and implied conca.kenations. Detecting 
keywords is a good example of something that a standardizing committee 
has;-= work hard on but the user doesn't care what the answer is. 

For example, the rule about 'DO' keywords is different in the "Red 
Book" from the "Blue Book": 

"The sub-keywords WHILE and UNTIL are reserved within a DO instruction, 
in that they cannot be used as symbols in any of the expressions. 
Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb, or 
exprf. FOREVER is also reserved, but only if it immediately follows the 
keyword DO." 

"The sub-keywords TO, BY, FOR, WHILE, and UNTIL are reserved within a DO 
instruction, in that they cannot name variables in the expression(s) but 
they may be used as the name of the control variable. FOREVER is 
similarly reserved, but only if it immediately follows the keyword DO." 

It is doubtful if any Rexx programmer cares at all, but it has to be 
defined. To avoid special cases for individual keywords, the committee 
has come up with the rule "If it could be a keyword it is". That means 
that the BNF and the rules for detecting labels and assignments are all 
applied in a left-to-right way;,if then a potential keyword occurs and 
there has been nothing to contradict the possibility of it being a 
keyword:then it is a keyword. We don't think this rule changes the 
behaviour of any existing error-free programs and it guarantees the 
definition hasn't missed any case. 

The "Red Book" goes further than many language definitions by specifying 
the exact wording of all the error messages. However, 
say when a particular message is produced. 

it doesn't always 
There are some cases where 

the book says "It is an error..." and leaves it to the implementer to 
choose the message from the given set of messages. 
have made the same choice. 

Not all implementers 
This is another topic where the actual Rexx 

fi48 

c 



user probably doesn't care much what is done; but I think the committee 
is right to standardize the choice. 

We do this for syntax errors (that is programs that contradict the BNF) 
by annotating the BNF to show what message should be produced for 
failures at any point. We do it for execution errors by writing tests 
in the definition for particular numbered errors. 

The number of distinct error messages defined in the "Red Book" is far 
fewer than the number of places where the standard will detect an error. 
So the simplest approach would lead to the same message being given for 
several places where it was detected. For example, 
things wrong with a call might be detected, 

many different 
but they would all lead to 

syntax error 40. 

The committee has decided to extend Rcxx with subcodes - this is within 
our mandate because of the portability and maintainability 
considerations in error detection. So there will be, for instance, 

Error 40.16 Argument <number> to routine <name> must be non-null 

Existing programs might be dependent on actually testing the major 
error number, the 40 in this case, 
changed. 

so that part of the language isn't 

ask for 
The subcode only comes into play if the program chooses to 

it or on termination messages. 

-------------------------==-----=-----------------------=--.------------ 

The ability to issue commands is a central pillar of Rexx strengths. 
The way of issuing commands is well-defined; a clause which is an 
expression. However, the way in which the commands access Rexx data and 
the way in which Rexx accesses the results of commands are not 
well-defined. There are mechanisms that can be used, such as streams, 
the stack, and the variable pool but how the commands actually do their 
I/G has always been left up to the implementation. 

The committee has added an extension which will be available on all 
systems that conform to the standard, 
way-of using commands. 

and hence provide a more portable 

The ADDRESS instruction now has extra options: 

ADDRESS . . . WITH INPUT STREAM MyOne OUTPUT STREAM MyTwo 

ADDRESS . . . WITH INPUT STEM RxOut. OUTPUT STEM RxIn. 

This way of using stemmed variables has been a popular convention 
ins conjunction with implementers' "extras" to Rexx so the committee 
is not forcing some completely untested invention on users. 

______-__---_--__-______________________------------------- _______-__------_--_____________________~~-~~--------~ 

That is the end of the presentation except to remind you that this 
is merely an account of a snapshot in the development process - the content of the standard when eventually approved could be entirely 
different. 

Dr B L Marks 
Room G.0.023, MP 212 
IBM UK Labs Ltd, Hursley Park, Winchester, Hampshire, England 
Tel 44-962-844433 Ext 6643 Internet:marks@winvmd.vnet.ibm.com 

149 
c 


