
COMMUNICATIONS AND EVENT HANDLING WITH RDO<

RAINER F. HA US^
I BM

100

Communications
and

Event Handling
with REXX

Rainer F. Hauser

May 1992

Communications and Event Handling with REXX

Rainer F. Hauser 101 May 1992

Some Questions
REXX is a sequential procedure (macro, control or glue) lan-
guage. Is it really, or could it be that it is actually a programming
language? What about REXX and concurrency?

Communications:

Is REXX the right choice for programming communications soft-
ware? Does it provide the necessary constructs for such pro-
grams? What about the performance?

Event Handling:

Is REXX suitable for general event handling? What is missing
today for writing such programs? What are the events which fit
the paradigm of REXX?

Three REXX Extension Packages:

A kind of answer ”by doing” to some of these questions:

REXXIUCV: REXX Interface to IUCV

REXXSOCK: REXX Interface to TCP/IP Socket Calls

REXXWAIT REXX General Purpose Event Handling with
a Central Wait Function

Communications and Event Handling with REXX

Rainer E Hauser 102 May 1992

I = = T = Zurich Research Laboratory I I -111
I L.L -a

REXX and Concurrency Today
A REXX program can process events sequentially. To do so, it
needs the possibility to find out when an event has occurred,
but has not yet been consumed.

The following REXX statements determine whether a console event is
pending:

i f e x t e r n a l s () >O t h e n . . .
When no event is currently pending, it needs the possibility to
wait for an event.

The following REXX statements wait for a console event:

s a y ' E n t e r y o u r name, p l e a s e . '
parse e x t e r n a l name

To avoid being blocked despite a pending event which could be
processed, it needs the possibility to wait for one event within a
given list of events.

Today, a REXX program can

sometimes not determine whether a specific event is
pending

often not wait for a specific event

not wait for one event within a given list of events

Communications and Event Handling with REXX

Rainer F. Hauser 103 May 1992

REXX and Communications
One system facility and the two REXX extension packages
REXXIUCV and REXXSOCK provide communications in REXX:

APPC:

APPC is available via the SAA Common Programming Interface
Communications (CPI-C) and the Callable Service Library
(CSL).

IUCV:

IUCV is a communications facility available on VM systems.
The REXXIUCV program provides access to it from REXX on
VM/CMS. Therefore, it is a system-dependent communications
extension for REXX.

TCP/IP:

TCP/IP is a communications facility available on various differ-
ent platforms. The REXXSOCK program provides access to it
(Le. to the socket calls) from REXX on VM/CMS. Therefore;it
has been designed as a system-independent communications
extension for REXX.

Communiczltions and Event Handling with REXX

. ' Raiher F. Hauser 104 May 1992

i ==>-
I = = T = Zurich Research Laboratory - - 111 I-"."

REXXIUCV:

Syntax: resu l t = IUCV(subfunction, argl , ...? arg,)

Subfunctions:
0 INIT, TERM, QUERY, WAIT, ...

0 CONNECT, ACCEPT, SEVER, ...
0 SEND, RECEIVE, ...

Examples:
tempdata = IUCV('CONNECT','RFH',Z55,'No')
parse var tempdata p a t h i d msglim .
i n t t y p e = IUCV('WAIT', 600, 'NOWAIT')
n e x t i n t = IUCV (QUERY' , ' NEXT')
parse var n e x t b u f . b u f t y p e b u f p a t h i d rest
...

Problems:

Assembler Paradigm vs. REXX Paradigm

Special Purpose Wait Subfunction

Rainer F. Hauser

Communications and Event Handling with REXX

105 May 1992

c ..FZ GYZ Zurich Research Laboratory In ylrr ---
. . .

REXXSOCK: _,. I . , :
,..

i .I! ' .. '

Syntax: result = TCPIP (subfunction, argl, ..., aq,)

Subfu.nctions:

INIT, TERM, QUERY, GETHOSTID, ...

SOCKET, BIND, CONNECT, ACCEPT, CLOSE, ...

0' WRITE, READ, SEND, RECV, ...

Examples:
. ,

inetaddr = 'AF I N E T 1291 9.4.3.2'
socket id = T C P I P (' SOCKET')
tempdata = T C P I P ('CONNECT' , socke t id , i ne t addr)
...

a Problems:

0 C Paradigm vs. REXX Paradigm

Functions such as CONNECT and READ block the caller

Data can be encoded as ASCII or EBCDIC

Communications and Event Handling with REXX

Rainer F. Hauser
. I

106 May 1992

Common Design Decisions
Both packages are based on the following design decisions:

The status of the communications facility is kept by the
REXX extension package and can be determined by the
REXX program.

The status of the communications facility should not be
destroyed when the REXX program terminates.

Individual IUCV primitives or TCP/IP socket calls should
be provided as individual function calls to REXX. In other
words; there should be a one-to-one mapping between
REXX functions and IUCV primitives or TCP/IP socket
calls, respectively.

A REXX program should be allowed to process events
selectively as appropriate to the program (and the pro-
grammer).

Return codes are presented to the REXX program in the
REXX variable RC.

Limits such as the maximum length of messages are nec-
essary, but should be easy to change. (Such limits should
also make sense to human beings and not to computers.
Therefore, values such as 1000 are a better choice than
values such as 1024).

Communications and Event Handling with REXX

Rainer F. Hauser 107 May 1992

3
I - = = =y= Zurich Research Laboratory I - -

Experiences
REXX as a programming language is well suited for commu-
nications software, but with the current language features, there
are some limitations and inconveniencies:

Conversions:

REXX does not provide functions to convert ASCII strings to
EBCDIC strings and vice versa.

astring = TCPIP ('READ' , socket id)
e s t r i n g = A2E (astring)
...

Event Handling:

REXX does not provide functions to wait for one of several ex-
pected events. Assume that a REXX program needs to wait for
either an IUCV or a TCP/IP event.

event = WAIT (' IUCV PATH 5', ' TIME 10MIN')
event = WAIT('TCP/IP READ 4',' TIME 10MIN')
event = WAIT (I IUCV PATH 5'' 'TCPIIP READ 4')
...

Communications and Event Handling with REXX

Rainer F. Hauser 108 May 1992

I

REXX and Event Handling
The REXX extension package REXXWAIT on VM/CMS pro-
vides basic and advanced event handling in REXX through a
central wait function for REXX programs and a low-level inter-
face for REXX extension programs.

State of the Art (The REXX Handbook):

Amiga REXX: IPC (waiting on message port)

REXX for Tandem: DELAY function and TACLIO IPC

REXX for Unix: Plan for IPC (SOCKETS, STREAMS)

REXXIUCV: IUCV(’WAIT’,seconds)

0 .. .

Common Events:

Keyboard and Mouse: Character Oriented, Block Mode,
Window Applications ...

0 Time: Relative and Absolute Time, Time Events in Files ...

Mail: Messages, Notes ...

0 Synchronization: Inter-Process Communication, Locks,
Semaphores .. .

Communications and Event Handling with REXX

Rainer F. Hauser 109 May 1992

, ' , REXXWAIT

WAIT Function Syntax:
e v e n t = WAIT (e v e n t l argsl, ...' even t , args,)

Additional Events: IUCV, TCP/IP

Examples:
e v e n t = WAIT (' CONS NOREAD' , ' TIME 10MIN')
e v e n t = WAIT ('CONS', 'MSG', 'FILE MY TIMEFILE A6')
e v e n t = WAIT('T1ME ==:=O:OO','ALL')
e v e n t = WAIT ('IUCV TYPE 3 PATH 15')
e v e n t = WAIT('TCP/IP READ 15 WRITE 20 21','CONS')
e v e n t = WAIT('T1ME 10S','TIME 10:30:15','TIME')
...

, . SETVALUE Function Syntax:
r e s u l t = SETVALUE (even t args)

QUERYVALUE Function Syntax:
r e s u l t = QUERYVALUE (e v e n t args)

Communications and Event Handling with REXX

Rainer F. Hauser 110 May 1992

= = T = Zurich Research Laboratory I .. - _-- _- _1 --

REXXWAIT REXXTRY Sample Session
Sample session with REXXTRY, the facility to interactively
execute REXX instructions:

s a y s e t v a l u e (' M A 1 L C L A S S * NOHOLD')
OFF
R; <REXXTRY> ...
s a y w a i t (' M A I L ' , 'CONS')

RDR F I L E 0 0 5 0 SENT FROM NET P U N WAS 1 9 9 1 RECS 0022 ...
F i l e (2 4 0 4) spooled to HAUSER -- o r i g i n ZURLVMl (RFH) ...
M A I L 0 0 5 0
R; <REXXTRY> ...
say queryval ('MAIL 50')
1 9 9 2 / 0 4 / 1 6 0 5 : 3 9 : 4 1 Z U R L V M l (R F H) NOHOLD A 0 0 PROFILE EXEC
R; <REXXTRY> ...
s a y que ryva l (' M A I L 5 0 TAG')

2 NetData
R; <REXXTRY> ...
s a y queryval ('MAIL 5 0 NETDATA')

2 ZURLVMl (RFH) ALMVMD (HAUSER) 1 9 9 2 0 4 1 6 1 3 3 9 3 6 4 9 9 5 8 8 Ack
R; <REXXTRY> ...
s a y queryval ('MAIL 5 0 NETDATA 1')
Note
R; <REXXTRY> ...
s a y q u e r y v a l (' M A 1 L 5 0 NETDATA 2 ')
F i l e A 2 . P R O F I L E . E X E C
R; <REXXTRY> ...

Communications and Event Handling with REXX

Rainer F. Hauser 111 May 1992

- - - . - Zurich Research Laboratory I rwf -5%

REXXWAIT REXX Sample Program

Sample program using REXXWAIT and REXXSOCK (without
the necessary error testing):

...
address command ‘RXSOCKFN LOAD‘
call TCPIP ‘INITIALIZE’, ’TCPIP‘
if r c o 0 then exit rc
s = TCPIP (‘ SOCKET‘)
call TCPIP ’BIND‘, s, ’AF INET 1952 9.4.3.2’
call TCPIP ‘LISTEN’, s, 5
call SETVALUE ‘TCPIIP SOCKET’ s ‘NON-BLOCKING’
do forever

-

status = TCPIP (‘QUERY’, ‘ STATUS’)
parse var status init iucvstate reason
if iucvstate<>’Connected’ then exit 3000
eventd = WAIT(’TCP/IP READ‘ s, ‘CONS’, ‘TIME 1H’)
parse upper var eventd handler rest
select
when handler=‘TCP/IP‘ then do

desc = TCPIP (‘ACCEPT‘, s)
parse var desc d caf cport cipaddr

Communications and Event Handling with REXX

Rainer F. Hauser 112

...
call TCPIP ‘CLOSE‘, d

end
when handler=‘CONS’ then leave
otherwise nop

end
end
call TCPIP ‘ TERMINATE‘
address command ‘NUCXDROP RXSOCKFN’
...

May 1992

- ---_I - - . I Zurich Kesearch Laboratory - I I 1-1
. . .-

REXXWAIT Low-Level Interface

Through the low-level interface provided by REXXWAIT, other
programs (such as REXXIUCV and REXXSOCK) can export an
event name (such as IUCV and TCP/IP) and some branch ad-
dresses for communicating with the REXX programs using the

' functions provided by REXXWAIT.

Communications and Event Handling with REXX

Rainer F. Hauser 113 May 1992

I - - = = Zurich Research Laboratory 1 I) L &I-

. .~

REXXWAIT. Assembler Sample
.The following /370 Assembler code shows the code to register
an event handier:

LA R1, RXWPLIST R1 -> PLIST
svc 202 Call CMS
DC AL4 (1) Error

...
RXWPLIST
~.RXWCMD-

RXWNAME
RXWWTECB
RXWWAIT
RXWWAITE
RXWSETV
RXWQRYV

DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

OF
CL8 ' RXWAITFN'
CL4 ' SET'
XL4'00000000'
CL8'TCPIIP'
F'-1'
F ' -1 '
F ' - l '
F'-1'
F' -1'
F'-1'
F'-1'
F' -1'

Alignment
CMS command
RXW command
Special fence
Registered name
Address of ECB
BAL address WAIT
BAL address WAIT-E
BAL address SETV
BAL address QRYV
Not used yet
Not used yet
Not used yet

...
The program registers the event handier name 'TCP/IP' and
provides . , the following BAL or ECB addresses (or F'4'):

0 For WAIT: Wait ECB, WAIT and WAIT-E

For SETVALUE: SETV

f: : , .

I* .:; > . - 1(g . . ,

For QUERYVALUE: QRYV

Communications and Event Handling with REXX

- I Rainer F. Hauser 114 May 1992

REXXWAIT Register Conventions
When REXXWAIT passes the control to an event handler, the
following registers are used:

RO l e n g t h of a r g u m e n t s
R1 p o i n t e r t o a r g u m e n t s
R2 c a l l s e q u e n c e f l a g (f o r WAIT o n l y)
R 1 2 address of e x i t r o u t i n e (base regis ter)
R 1 3 save area f o r g e n e r a l p u r p o s e registers
R 1 4 r e t u r n address
R 1 5 same as R 1 2

The event handler passes the following data in the registers
back to REXXWAIT

RO l e n g t h of r e s u l t s t r i n g
R1 p o i n t e r t o r e s u l t s t r i n g
R 1 5 r e t u r n code (0, 1 o r error r e t u r n code)

Example:

Event Handler 'ABCD':

WAIT('ABCD T h i s i s t h e a r g u m e n t s t r i n g ')
-- _- 'ABCD T h i s i s t h e r e s u l t s t r i n g '

The event handler sees the arguments 'This is the argument
string' and returns the result 'This is the result string' to the
REXXWAIT program which subtracts or adds the event handler
name 'ABCD', respectively.

Communications and Event Handling with REXX

Rainer F. Hauser 115 May 1992

I - - --
I - I --I
c E = I = Zurich Research Laboratory

Considerations

Portability:

Some of the basic events are generally available on all operat-
ing system platforms on which REXX is implemented. Other
events require different arguments. Again others may not be
available at all.

WAIT (' TIME 10 : 30 : 15')
WAIT (' TIME ZHOURS 15MINUTES')
WAIT ('CONS READ')
WAIT('F1LE MY TIMEFILE A6')
WAIT('F1LE C:\REXXSYS\MY.TIM')
WAIT ('FILE' mytimefile)
SETVALUE ('MSG ON')
SETVALUE (' SMSG VMCF')

Operating System Support vs. REXX Support:

The same functions can be provided to a REXX program either
as Operating System facilities or as REXX built-in functions:

EXECIO vs. linein() and lineout() etc.

WAKEUP vs. wait() etc.

The WAKEUP program (version 5.5) has strongly influenced the
design and implementation of REXXWAIT!

Communications and Event Handling with REXX

Rainer F. Hauser 116 May 1992

